BFS将近两年没练过题了,今天重新回忆下以前刷的蓝桥杯题:九宫格重排

样例输入 

    //初始状态

    //终点状态

样例输出 

            //最短步数

样例输入 

    //初始状态
//终点状态

样例输出 

           //最短步数

思路

以下图为例,空格0可以走上下左右4步 :

当前0位于的位置是(1,1),所以可以移动到(1-1,1),(1,1+1),(1+1,1),(1,1-1)

然后通过康拓展开来校验,移动的位置是否走过,是否已到终点,是否越界。

康拓展开

表示的是当前排列在n个不同元素的全排列中的名次.

公式为:

X=a[n]*(n-)!+a[n-]*(n-)!+...+a[i]*(i-)!+...+a[]*!+a[]*!
//a[i]为当前未出现的元素中是排在第几个(从0开始 )

比如,3124 是1~4全排列的第几个?(从0开始,比如1234是1~4全排列第0个)

X=*!+ *!+ *!+ *!=  
  • 第一位,在未出现的元素(1,2,3,4)中,只有2个数(1和2)比它小,位2~4全排列有3!个,所以=2*3!
  • 第一位3,第二位1, 1在未出现的元素(1,2,4)中,只有0个数比它小,位3~4全排列有2!个,所以=0*2!
  • 第一位3,第二位1,第三位, 2在未出现的元素(2,4)中,只有0个数比它小,所以=0*1!
  • 第一位,第二位,第三位, 第四位,4在未出现的元素(4)中,只有0个数比它小,所以=0*0!

康拓展开代码(s[4]={3,1,2,4},n=4)

long int fac[]={,,,,,,,,,};//阶乘表

int congtuo(int s[],int n)
{
int i,j,temp,num;
num=;
for(i=;i<n;i++)
{
temp=; for(int j=i+;j<n;j++)
if(s[j]<s[i]) //判断几个数小于它
temp++; num+=fac[n-i-]*temp;
} return num;
}

九宫格代码如下,纯手打勿喷:

#include <stdio.h>
#include <string.h> long int fac[]={,,,,,,,,,};//阶乘表 unsigned char step[]={}; // 9!=362880,所以数组要大点 char method[][]={{-,},{,},{,},{,-}}; //4种移动方法 struct node_t{
unsigned char data[];
}; struct node_t save_step[]; //保存移动数据,最多有 9!个移动数据 unsigned char end_p[]; //终点位置 int congtuo(unsigned char s[],int n)
{
int i,j,temp,num;
num=;
for(i=;i<n;i++)
{
temp=;
for(int j=i+;j<n;j++)
if(s[j]<s[i]) //判断几个数小于它
temp++;
num+=fac[n-i-]*temp;
}
return num;
} /*处理0函数
*返回值0:交换的位置非法,或被走过
*返回值1:没被走过
*返回值2:找到终点
*/
int handler_zero(int i,unsigned char data[])
{
int x,y,temp,num; for(int j=;j<;j++)
if(data[j]==)
{
/*[x,y]:需要交换的位置*/
x=j%+method[i][];
y=j/+method[i][]; /*判断交换位置是否越界*/
if(x<||x>)
return ;
else if(y<||y>)
return ; /*判断交换后的位置是否已被走过*/
data[j]= data[x+y*];
data[x+y*]=;
num=congtuo(data,);
if(step[num]==) //已被走过
{
return ;
} if(memcmp(end_p,data,)==) //找到终点
{
return ;
}
step[num]=;
return ;
}
} int start=,end=;
int bfs(void)
{
int x,y;
int next_end=end; //存放下个位置的标志位
int err;
unsigned char temp[];
for(;start<=end;start++)
{
for(int i=;i<;i++) //4种走法
{
memcpy(temp,(unsigned char *)save_step[start].data,); err=handler_zero(i,temp); //处理数据里的0 if(err) //保存数据
{
memcpy((unsigned char *)save_step[++next_end].data,temp,); if(err==) //找到终点
return ;
}
}
}
start=end+;
end=next_end;
return (+bfs());
} int main()
{
int step_num=; //步数
unsigned char s[]; printf("please enter start point:\r\n");
for(int i=;i<;i++)
{
scanf("%1d",&save_step[].data[i]);
} printf("please enter end point:\r\n");
for(int i=;i<;i++)
{
scanf("%1d",&end_p[i]);
}
step_num=bfs(); printf("%d\n",step_num); }

如果想看走的步数具体内容,该怎么办?

其实很简单,因为具体内容都保存在save_step[]里,我们只需要在node_t结构体里多定义一个标志位step_p,来指向上次步数的位置在哪.

代码如下:

#include <stdio.h>
#include <string.h> long int fac[]={,,,,,,,,,};//阶乘表 unsigned char step[]={}; // 9!=362880,所以数组要大点 char method[][]={{-,},{,},{,},{,-}}; //4种移动方法 struct node_t{
unsigned char data[];
unsigned int step_p;
}; struct node_t save_step[]; //保存移动数据,最多有 9!个移动数据 unsigned char end_p[]; //终点坐标 unsigned int end_index; //记录终点位置 int congtuo(unsigned char s[],int n)
{
int i,j,temp,num;
num=;
for(i=;i<n;i++)
{
temp=;
for(int j=i+;j<n;j++)
if(s[j]<s[i]) //判断几个数小于它
temp++;
num+=fac[n-i-]*temp;
}
return num;
} /*处理0函数
*返回值0:交换的位置非法,或被走过
*返回值1:没被走过
*返回值2:找到终点
*/
int handler_zero(int i,unsigned char data[])
{
int x,y,temp,num; for(int j=;j<;j++)
if(data[j]==)
{
/*[x,y]:需要交换的位置*/
x=j%+method[i][];
y=j/+method[i][]; /*判断交换位置是否越界*/
if(x<||x>)
return ;
else if(y<||y>)
return ; /*判断交换后的位置是否已被走过*/
data[j]= data[x+y*];
data[x+y*]=;
num=congtuo(data,);
if(step[num]==) //已被走过
{
return ;
} if(memcmp(end_p,data,)==) //找到终点
{
return ;
} step[num]=;
return ;
}
} int start=,end=;
int bfs(void)
{
int x,y;
int next_end=end; //存放下次bfs的end标志位
int err;
unsigned char temp[]; for(;start<=end;start++)
{
for(int i=;i<;i++) //4种走法
{
memcpy(temp,(unsigned char *)save_step[start].data,); err=handler_zero(i,temp); //处理数据里的0 if(err) //保存数据
{
memcpy((unsigned char *)save_step[++next_end].data,temp,); save_step[next_end].step_p=start; //记录上次步数位置. if(err==) //找到终点
{
end_index=next_end; //记录终点步数位置.
return ;
}
}
}
}
start=end+;
end=next_end;
return (+bfs());
} int main()
{
int step_num=; //步数
unsigned char s[]; printf("please enter start point:\r\n");
for(int i=;i<;i++)
{
scanf("%1d",&save_step[].data[i]);
} printf("please enter end point:\r\n");
for(int i=;i<;i++)
{
scanf("%1d",&end_p[i]);
} step_num=bfs();
printf("%d\n",step_num); /**打印步数具体内容**/
for(;step_num>=;step_num--)
{
printf("**step %d********\n",step_num);
for(int i=;i<;i++)
{
printf("%d %d %d\n",save_step[end_index].data[i*],
save_step[end_index].data[i*+],
save_step[end_index].data[i*+]);
}
end_index=save_step[end_index].step_p;
printf("\n");
} }

打印结果

BFS-九宫格重排(详解)的更多相关文章

  1. BFS和DFS详解

    BFS和DFS详解以及java实现 前言 图在算法世界中的重要地位是不言而喻的,曾经看到一篇Google的工程师写的一篇<Get that job at Google!>文章中说到面试官问 ...

  2. BFS和DFS详解以及java实现

    前言 图在算法世界中的重要地位是不言而喻的,曾经看到一篇Google的工程师写的一篇<Get that job at Google!>文章中说到面试官问的问题中几乎有一半的问题都可以用图的 ...

  3. Leetcode之广度优先搜索(BFS)专题-详解429. N叉树的层序遍历(N-ary Tree Level Order Traversal)

    Leetcode之广度优先搜索(BFS)专题-429. N叉树的层序遍历(N-ary Tree Level Order Traversal) 给定一个 N 叉树,返回其节点值的层序遍历. (即从左到右 ...

  4. BFS和DFS详解以及java实现(转载)

    作者:Leo-Yang 原文都先发布在作者个人博客:http://www.leoyang.net/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连 ...

  5. BFS详解

    广度优先搜索详解          1. 也称宽度优先搜索,顾名思义,就是将一棵树一层一层往下搜.算法首先搜索和s距离为k的所有顶点,然后再去搜索和S距离为k+l的其他顶点.BFS是一种完备策略,即只 ...

  6. 图论中DFS与BFS的区别、用法、详解…

    DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...

  7. 图论中DFS与BFS的区别、用法、详解?

    DFS与BFS的区别.用法.详解? 写在最前的三点: 1.所谓图的遍历就是按照某种次序访问图的每一顶点一次仅且一次. 2.实现bfs和dfs都需要解决的一个问题就是如何存储图.一般有两种方法:邻接矩阵 ...

  8. POJ 1077 Eight (BFS+康托展开)详解

    本题知识点和基本代码来自<算法竞赛 入门到进阶>(作者:罗勇军 郭卫斌) 如有问题欢迎巨巨们提出 题意:八数码问题是在一个3*3的棋盘上放置编号为1~8的方块,其中有一块为控制,与空格相邻 ...

  9. 图文详解两种算法:深度优先遍历(DFS)和广度优先遍历(BFS)

    参考网址:图文详解两种算法:深度优先遍历(DFS)和广度优先遍历(BFS) - 51CTO.COM 深度优先遍历(Depth First Search, 简称 DFS) 与广度优先遍历(Breath ...

随机推荐

  1. setinIerval和setTimeout的区别?

    setTimeout和setInterval的使用 这两个方法都可以用来实现在一个固定时间段之后去执行JavaScript.不过两者各有各的应用场景. 方 法 实际上,setTimeout和setIn ...

  2. BZOJ 1037: [ZJOI2008]生日聚会Party [序列DP]

    1037: [ZJOI2008]生日聚会Party Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2249  Solved: 1337[Submit] ...

  3. 【模板小程序】求M~N范围内的质数个数

    /* 本程序说明: [编程题] 求素数 时间限制:2秒 空间限制:32768K 输入M.N,1 < M < N < 1000000,求区间[M,N]内的所有素数的个数.素数定义:除了 ...

  4. spring,property not found on type

    刚开始学spring mvc ,遇到这个报错. jsp页面 user 实体类 public class User { private String name; private int age; pri ...

  5. 听闰土大话前端之ES6是怎么来的

    前言 相信做前端的朋友没有不知道ECMAScript6的,都知晓ES6新增了不少新的特性,但是你知道ES6是怎么来的吗?今天就让闰土来带大家大话ES6的前世今生.当然了,这篇文章会以扫盲为主,科普为辅 ...

  6. 解决CXF的java.io.FileNotFoundException: class path resource [META-INF/cxf/cxf-extension-soap.xml] cannot be opened because it does not exist

    以下是错误信息 九月 25, 2017 8:22:04 下午 org.springframework.web.context.support.XmlWebApplicationContext prep ...

  7. Java经典编程题50道之三十九

    写一个函数,求一个字符串的长度,在main函数中输入字符串,并输出其长度. public class Example39 {    public static void main(String[] a ...

  8. Java经典编程题50道之二十三

    给一个不多于5位的正整数,要求:①求它是几位数:②逆序打印出各位数字. public class Example23 {    public static void main(String[] arg ...

  9. solr6.6教程-从mysql数据库中导入数据(三)

    整理多半天的solr6.6,终于算是把solr6.6中配置数据库弄出来了,网上的文章千篇一律,各说个的,没有一篇统一覆盖solr6.6版本配置的 帖子,本章节我会把配置的一些注意事项一一列举,由于时间 ...

  10. Jupyter 初体验

    简介 Jupyter notebook 是一个非常强大的工具,可以创建漂亮的交互式文档. 安装 安装环境:win7专业版32位系统 + python 3.6.4 安装命令:pip install ju ...