数据挖掘入门与实战  公众号: datadw

相关帖子




————————————————————————————————————————————————————————

某毕业班共有30位同学,来自22个地区,我们希望在假期来一次说走就走的旅行,将所有同学的家乡走一遍。算起来,路费是一笔很大的花销,所以希望设计一个旅行方案,确保这一趟走下来的总路程最短。

旅行商问题是一个经典的NP问题

NP就是Non-deterministic Polynomial,即多项式复杂程度的非确定性问题,是世界七大数学难题之一。

如果使用枚举法求解,22个地点共有:

(22-1)!/2 = 25545471085854720000 种路线方案

GA算法

遗传算法将“优胜劣汰,适者生存”的生物进化原理引入优化参数形成的编码串联群体中,按所选择的适应度函数并通过遗传中的复制、交叉及变异对个体进行筛选,使适应度高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。遗传算法的算法简单,可并行处理,并能到全局最优解。

GA算法设计

1.生成原始染色体种群

采用实数编码,以N个城市的序号作为一条可能的路径。 例如对8个城市,可生成如下的染色体代表一条路径,8,6,4,2,7,5,3,1.重复操作生成数目等于n的染色体种群。

2.生成适应度函数

由于是求最短路径,适应度函数一般求函数最大值,所以取路径总长度T的倒数,即fit

ness=1/T。

3.选择染色体

采用轮盘赌的方式产生父代染色体。

4.对染色体种群进行编码

假设有一个含有九个城市的列表:W=(A,B,C,D,E,F,G,H,I)。

有如下两条路线:

W1=(A,D,B,H,F,I,G,E,C)

W2=(B,C,A,D,E,H,I,F,G)

则这两条路线可编码为:

W1=(142869753)

W2=(231458967)

5.交叉

以概率Pc选择参加交叉的个体(偶数个),用两点交叉算子进行操作。

例如对于下面两个染色体个体

(1 3 4 | 5 2 9 | 8 6 7)

(1 7 6 | 9 5 2 | 4 3 8)

通过两点交叉可得到子代染色体为

(1 3 4 | 9 5 2 | 8 6 7)

(1 7 6 | 5 2 9 | 4 3 8)

6.变异

以概率Pm选择参加变异的个体,用对换变异进行操作。随机的选择个体中的两个位点,进行交换基因。

如A=123456789;如果对换点为4和7,则经过对换后为B=123756489

7.解码

对染色体进行解码,恢复染色体的实数表示方法。

8.逐代进化

根据得出的新的染色体,再次返回选择染色体的步骤,进行迭代,直到达到迭代次数,算法停止。

算法实现

#加载packageslibrary(sp)
library(maptools)
library(geosphere)

source("C:\\Users\\ShangFR\\Desktop\\路径优化\\GA算法脚本.R")
data=read.csv("C:\\Users\\ShangFR\\Desktop\\路径优化\\143地理坐标.csv") #读取城市经纬度数据
border <- readShapePoly("C:\\Users\\ShangFR\\Desktop\\路径优化\\map\\bou2_4p.shp") #读取各省的边界数据等#初始化(列出地区距离矩阵-聚类)da=data[,1:2] rownames(da)=data[,3] hc=hclust(dist(da)) cutree(hc, h = 10) plot(hc) route=CreatDNA(data,5)   x = route[,1] y = route[,2] z = route[,3] cols=route[,4] muer.lonlat = cbind(route[,1],route[,2]) # matrixmuer.dists = distm(muer.lonlat, fun=distVincentyEllipsoid) # 精确计算,椭圆ans=round(muer.dists/1000,2) roundots = list(x=x,y=y,ans=ans,z=z,cols=cols) species = GA4TSP(dots=roundots,initDNA=NULL,N=50,cp=0.1,vp=0.01,maxIter=1000,maxStay=100,maxElite=2,drawing=TRUE)

最优路径可视化

此图基于百度Echarts

R语言-GA算法脚本

用GA算法设计22个地点之间最短旅程-R语言实现的更多相关文章

  1. GA算法-R语言实现

    旅行商问题 北工商-经研143班共有30位同学,来自22个地区,我们希望在假期来一次说走就走的旅行,将所有同学的家乡走一遍.算起来,路费是一笔很大的花销,所以希望设计一个旅行方案,确保这一趟走下来的总 ...

  2. 算法设计手冊(第2版)读书笔记, Springer - The Algorithm Design Manual, 2ed Steven S.Skiena 2008

    The Algorithm Design Manual, 2ed 跳转至: 导航. 搜索 Springer - The Algorithm Design Manual, 2ed Steven S.Sk ...

  3. 算法设计与分析 - AC 题目 - 第 2 弹

    PTA-算法设计与分析-AC原题7-1 最大子列和问题 (20分)给定K个整数组成的序列{ N1, N2, ..., NK },“连续子列”被定义为{ Ni, Ni+1, ..., Nj },其中 1 ...

  4. 【技术文档】《算法设计与分析导论》R.C.T.Lee等·第7章 动态规划

    由于种种原因(看这一章间隔的时间太长,弄不清动态规划.分治.递归是什么关系),导致这章内容看了三遍才基本看懂动态规划是什么.动态规划适合解决可分阶段的组合优化问题,但它又不同于贪心算法,动态规划所解决 ...

  5. 【转载】FPGA算法设计随笔

    FPGA设计算法依次需要完成MATLAB浮点仿真 MATLAB定点仿真 verilogHDL定点运算以及数据对比的流程.其中浮点到定点的转换尤为重要,需要在数据表示范围和精度之间做出权衡.另外掌握定点 ...

  6. 【字符串处理算法】字符串包含的算法设计及C代码实现【转】

    转自:http://blog.csdn.net/zhouzhaoxiong1227/article/details/50679587 版权声明:本文为博主原创文章,对文章内容有任何意见或建议,欢迎与作 ...

  7. 『嗨威说』算法设计与分析 - 动态规划思想小结(HDU 4283 You Are the One)

    本文索引目录: 一.动态规划的基本思想 二.数字三角形.最大子段和(PTA)递归方程 三.一道区间动态规划题点拨升华动态规划思想 四.结对编程情况 一.动态规划的基本思想: 1.1 基本概念: 动态规 ...

  8. 算法设计与分析 - 李春葆 - 第二版 - html v2

    1 .1 第 1 章─概论   1.1.1 练习题   1 . 下列关于算法的说法中正确的有( ).   Ⅰ Ⅱ Ⅲ Ⅳ .求解某一类问题的算法是唯一的   .算法必须在有限步操作之后停止   .算法 ...

  9. GA算法及参数对结果的影响

    1.遗传算法简介 遗传算法是一种基于自然选择和群体遗传机理的搜索算法,它模拟了自然选择和自然遗传过程中的繁殖.杂交和突变现象.再利用遗传算法求解问题时,问题的每一个可能解都被编码成一个“染色体”,即个 ...

随机推荐

  1. 浅谈ES6

    ECMAScript6.0(简称ES6)是javaScript语言的下一代标准,已经在2015年6月正式发布了.它的目标,使得javaScript语言可以用来编写复杂的大型应用程序,成为企业级开发语言 ...

  2. [DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.9_归一化normalization

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9 归一化Normaliation 训练神经网络,其中一个加速训练的方法就是归一化输入(normalize inputs). 假设我们有一个 ...

  3. javascript中的Date对象和Math对象

    1.Date对象 1.创建Date对象 var time1=new Date() 方法1:不指定参数 var time1=new Date(); alert(time1.toLocaleString( ...

  4. 基本c功能使用不当导致崩溃

    一些基本的c语言操作,使用不当也会有出其不意的问题.比如我最近的一个项目中,用到几句代码: uint8_t * out_pcm = NULL; ....... if (NULL == out_pcm) ...

  5. ES6与canvas实现鼠标小球跟随效果

    最近闲来无聊,看了下ES6的语法,结合canvas实现了动画特效--随着鼠标的移动,会有小球跟随且自动消失的动画. 首先,html部分,目前就一个canvas标签. <canvas id=&qu ...

  6. 编程岗位电话面试问答Top 50[转]

    原文链接:http://blog.jobbole.com/84618/ 1. 从哈希表,二叉树和链表中取元素的时间复杂度?如果你有数百万记录呢? 哈希表的时间复杂度为O(1),二叉树为O(logN) ...

  7. Python中Template使用的一个小技巧

    Python中Template是string中的一个类,可以将字符串的格式固定下来,重复利用. from string import Template s = Template("there ...

  8. sql的升阶

    前言:基本数据库操作根本无法满足实际的需要,需要引入更多的操作. 触发器-隐式的,主动的,更新数据表中的信息.带有inserted和deleted两个临时表,代表新操作和旧操作. 它是一种特殊的存储过 ...

  9. flex 布局 input 宽度不自适应

    flex 布局 input 宽度不自适应 解决方法: 给 input 加上min-height 解决!

  10. 开始使用PHPUnit单元测试

    何为单元测试: 指对软件中的基本单元进行测试,如函数.方法等,以检查其返回值或行为是否符合预期:实际中软件是很复杂的,由许多组件构成,执行流程连贯在一起,要进行单元片段的测试,就需要为其提供执行上下文 ...