Flink-cdc同步mysql到iceberg丢失数据排查

Emit iceberg write result dataFiles: [
GenericDataFile{content=data, file_path=ofs://sss/test1235/data/00000-0-8a53aa17-c767-47bd-b865-32e13d54bd8e-02520.parquet, file_format=PARQUET, spec_id=0, partition=PartitionData{}, record_count=592, file_size_in_bytes=1067447, column_sizes={1=2113, 2=2077, 3=2393, 4=3018, 5=1667, 6=166, 7=95, 8=1412, 9=1121, 10=163, 11=1409}, value_counts={1=592, 2=592, 3=592, 4=592, 5=592, 6=592, 7=592, 8=592, 9=592, 10=592, 11=592}, null_value_counts={1=0, 2=0, 3=0, 4=0, 5=0, 6=0, 7=0, 8=0, 9=0, 10=0, 11=0}, nan_value_counts={}, lower_bounds=org.apache.iceberg.SerializableByteBufferMap@fcc2b49e, upper_bounds=org.apache.iceberg.SerializableByteBufferMap@1b557080, key_metadata=null, split_offsets=[4], equality_ids=null, sort_order_id=0}],
result.deleteFiles [GenericDeleteFile{content=equality_deletes, file_path=ofs://sss/test1235/data/00000-0-8a53aa17-c767-47bd-b865-32e13d54bd8e-02521.parquet, file_format=PARQUET, spec_id=0, partition=PartitionData{}, record_count=534, file_size_in_bytes=1050981, column_sizes={1=1931}, value_counts={1=534}, null_value_counts={1=0}, nan_value_counts={}, lower_bounds=org.apache.iceberg.SerializableByteBufferMap@471b5f22, upper_bounds=org.apache.iceberg.SerializableByteBufferMap@9fc9501c, key_metadata=null, split_offsets=null, equality_ids=[1], sort_order_id=0},
GenericDeleteFile{content=position_deletes, file_path=ofs://sss/test1235/data/00000-0-8a53aa17-c767-47bd-b865-32e13d54bd8e-02522.parquet, file_format=PARQUET, spec_id=0, partition=PartitionData{}, record_count=58, file_size_in_bytes=2004, column_sizes={2147483546=239, 2147483545=153}, value_counts={2147483546=58, 2147483545=58}, null_value_counts={2147483546=0, 2147483545=0}, nan_value_counts={}, lower_bounds=org.apache.iceberg.SerializableByteBufferMap@c337bae4, upper_bounds=org.apache.iceberg.SerializableByteBufferMap@c337baa5, key_metadata=null, split_offsets=null, equality_ids=null, sort_order_id=null}]



2024-09-16 09:25:53.026 [Source: MySQL-CDC- -> Calc(select=[id, course_number, clazz_number, subclazz_number, user_id, CAST(status) AS status, CASE(isdel IS NOT NULL, CASE(isdel, 1, 0), null:INTEGER) AS isdel, CAST(create_time) AS create_time, CAST(update_time) AS update_time, enter_status, CAST(join_clazz_time) AS join_clazz_time]) -> NotNullEnforcer(fields=[id]) (1/1)#0] INFO
com.ververica.cdc.connectors.mysql.source.reader.MySqlSourceReader - Binlog offset on checkpoint 859: {transaction_id=null, ts_sec=1726449952, file=mysql-bin.022296, pos=459680089, kind=SPECIFIC, gtids=15fad577-6501-11ea-b6b2-b8599fae21fa:9456479883-9480246523, row=1, event=2, server_id=31681949}
2024-09-16 09:30:53.037 [Source: MySQL-CDC- -> Calc(select=[id, course_number, clazz_number, subclazz_number, user_id, CAST(status) AS status, CASE(isdel IS NOT NULL, CASE(isdel, 1, 0), null:INTEGER) AS isdel, CAST(create_time) AS create_time, CAST(update_time) AS update_time, enter_status, CAST(join_clazz_time) AS join_clazz_time]) -> NotNullEnforcer(fields=[id]) (1/1)#0] INFO
com.ververica.cdc.connectors.mysql.source.reader.MySqlSourceReader - Binlog offset on checkpoint 860: {transaction_id=null, ts_sec=1726450252, file=mysql-bin.022296, pos=474797741, kind=SPECIFIC, gtids=15fad577-6501-11ea-b6b2-b8599fae21fa:9456479883-9480269403, row=1, event=2, server_id=31681949}



Flink-cdc同步mysql到iceberg丢失数据排查的更多相关文章
- Elasticsearch的快速使用——Spring Boot使用Elastcisearch, 并且使用Logstash同步mysql和Elasticsearch的数据
我主要是给出一些方向,很多地方没有详细说明.当时我学习的时候一直不知道怎么着手,花时间找入口点上比较多,你们可以直接顺着方向去找资源学习. 如果不是Spring Boot项目,那么根据Elastics ...
- MySQL不会丢失数据的秘密,就藏在它的 7种日志里
本文收录在 GitHub 地址 https://github.com/chengxy-nds/Springboot-Notebook 进入正题前先简单看看MySQL的逻辑架构,相信我用的着. MySQ ...
- Canal:同步mysql增量数据工具,一篇详解核心知识点
老刘是一名即将找工作的研二学生,写博客一方面是总结大数据开发的知识点,一方面是希望能够帮助伙伴让自学从此不求人.由于老刘是自学大数据开发,博客中肯定会存在一些不足,还希望大家能够批评指正,让我们一起进 ...
- 电商网站垮IDC数据备份,MySql主从同步,图片及其它数据文件的同步
原文网址:http://www.bzfshop.net/article/180.html 对一个电子商务网站而言,最宝贵的资源就是数据.服务器是很廉价的东西,即使烧了好几个也问题不大,但是用户数据如果 ...
- 基于 MySQL Binlog 的 Elasticsearch 数据同步实践 原
一.背景 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品.订单等数据的多维度检索. 使用 Elasticsearch 存储业务数据可以 ...
- 基于MySQL Binlog的Elasticsearch数据同步实践
一.为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品.订单等数据的多维度检索. 使用 Elasticsearch 存储业务数 ...
- 通过Gearman实现MySQL到Redis的数据同步
对于变化频率非常快的数据来说,如果还选择传统的静态缓存方式(Memocached.File System等)展示数据,可能在缓存的存取上会有很大的开销,并不能很好的满足需要,而Redis这样基于内存的 ...
- 快速同步mysql数据到redis中
MYSQL快速同步数据到Redis 举例场景:存储游戏玩家的任务数据,游戏服务器启动时将mysql中玩家的数据同步到redis中. 从MySQL中将数据导入到Redis的Hash结构中.当然,最直接的 ...
- Gearman + Nodejs + MySQL UDF异步实现 MySQL 到 Redis 的数据同步
[TOC] 1, 环境 CentOS, MySQL, Redis, Nodejs 2, Redis简介 Redis是一个开源的K-V内存数据库,它的key可以是string/set/hash/list ...
- TiDB 作为 MySQL Slave 实现实时数据同步
由于 TiDB 本身兼容绝大多数的 MySQL 语法,所以对于绝大多数业务来说,最安全的切换数据库方式就是将 TiDB 作为现有数据库的从库接在主 MySQL 库的后方,这样对业务方实现完全没有侵入性 ...
随机推荐
- python之数据库管理工具sandman2
文档:Welcome to sandman2's documentation! - sandman2 0.0.1 documentation [安装] pip install sandman2 安装成 ...
- nginx之常见错误
在此只介绍源码安装nginx的时候,发生的一些常见的错误 1. nginx访问出现File not found 1) php-fpm找不到SCRIPT_FILENAME中执行的PHP文件 更改配置文件 ...
- 设计模式【3.2】-- JDK动态代理源码分析有多香?
前面文章有说到代理模式:http://aphysia.cn/archives/dynamicagentdesignpattern 那么回顾一下,代理模式怎么来的?假设有个需求: 在系统中所有的 con ...
- docker环境一个奇怪的问题,容器进程正常运行,但是docker ps -a却找不到容器,也找不到镜像
一: 问题: docker环境一个奇怪的问题,使用容器跑的进程正常提供服务,在服务器上也能看到对应的端口正在监听,但是docker ps -a却找不到容器,也找不到镜像. 查看我使用docker容器启 ...
- IOS CABasicAnimation实现旋转动画
IOS CABasicAnimation实现旋转动画 定义一个CABasicAnimation lazy var rotateAnimation: CABasicAnimation = { let a ...
- WCF Bindings Needed For HTTPS
原文地址:https://weblogs.asp.net/srkirkland/wcf-bindings-needed-for-https 我刚刚完成了我的第一个 WCF 应用,它在我的开发机上顺利工 ...
- 入门 .NET Aspire: 使用 .NET 简化云原生应用开发
入门 .NET Aspire: 使用 .NET 简化云原生应用开发 https://devblogs.microsoft.com/dotnet/introducing-dotnet-aspire-si ...
- kubernetes批量删除长期处于Terminating状态的namespace
环境是k3s 1.19.1版本 有时候跑实验,实验总是卡住,而且还删不了ns,一跑又n个 强行删除有风险,强删需谨慎!! 创建脚本 delns.sh #!/bin/bash for i in &quo ...
- 在openEuler RISC-V上无痛部署Solidity
近几年区块链很火,随着各国政府对加密技术的监管政策不断变化和BTC的暴涨,越来越多人对这项去中心化的技术充满着期待.这次我用openEuler 24.09 RISC-V的远程机器尝试编译了Solidi ...
- error LNK2038: 检测到“_MSC_VER”的不匹配项问题
_MSC_VER这个相当于做了宏的检测 _MSC_VER 定义编译器的版本. 一些编译器版本的_MSC_VER值:MS VC++ 14.0 _MSC_VER = 1900 vs2015MS VC++ ...