Flink-cdc同步mysql到iceberg丢失数据排查

Emit iceberg write result dataFiles: [
GenericDataFile{content=data, file_path=ofs://sss/test1235/data/00000-0-8a53aa17-c767-47bd-b865-32e13d54bd8e-02520.parquet, file_format=PARQUET, spec_id=0, partition=PartitionData{}, record_count=592, file_size_in_bytes=1067447, column_sizes={1=2113, 2=2077, 3=2393, 4=3018, 5=1667, 6=166, 7=95, 8=1412, 9=1121, 10=163, 11=1409}, value_counts={1=592, 2=592, 3=592, 4=592, 5=592, 6=592, 7=592, 8=592, 9=592, 10=592, 11=592}, null_value_counts={1=0, 2=0, 3=0, 4=0, 5=0, 6=0, 7=0, 8=0, 9=0, 10=0, 11=0}, nan_value_counts={}, lower_bounds=org.apache.iceberg.SerializableByteBufferMap@fcc2b49e, upper_bounds=org.apache.iceberg.SerializableByteBufferMap@1b557080, key_metadata=null, split_offsets=[4], equality_ids=null, sort_order_id=0}],
result.deleteFiles [GenericDeleteFile{content=equality_deletes, file_path=ofs://sss/test1235/data/00000-0-8a53aa17-c767-47bd-b865-32e13d54bd8e-02521.parquet, file_format=PARQUET, spec_id=0, partition=PartitionData{}, record_count=534, file_size_in_bytes=1050981, column_sizes={1=1931}, value_counts={1=534}, null_value_counts={1=0}, nan_value_counts={}, lower_bounds=org.apache.iceberg.SerializableByteBufferMap@471b5f22, upper_bounds=org.apache.iceberg.SerializableByteBufferMap@9fc9501c, key_metadata=null, split_offsets=null, equality_ids=[1], sort_order_id=0},
GenericDeleteFile{content=position_deletes, file_path=ofs://sss/test1235/data/00000-0-8a53aa17-c767-47bd-b865-32e13d54bd8e-02522.parquet, file_format=PARQUET, spec_id=0, partition=PartitionData{}, record_count=58, file_size_in_bytes=2004, column_sizes={2147483546=239, 2147483545=153}, value_counts={2147483546=58, 2147483545=58}, null_value_counts={2147483546=0, 2147483545=0}, nan_value_counts={}, lower_bounds=org.apache.iceberg.SerializableByteBufferMap@c337bae4, upper_bounds=org.apache.iceberg.SerializableByteBufferMap@c337baa5, key_metadata=null, split_offsets=null, equality_ids=null, sort_order_id=null}]



2024-09-16 09:25:53.026 [Source: MySQL-CDC- -> Calc(select=[id, course_number, clazz_number, subclazz_number, user_id, CAST(status) AS status, CASE(isdel IS NOT NULL, CASE(isdel, 1, 0), null:INTEGER) AS isdel, CAST(create_time) AS create_time, CAST(update_time) AS update_time, enter_status, CAST(join_clazz_time) AS join_clazz_time]) -> NotNullEnforcer(fields=[id]) (1/1)#0] INFO
com.ververica.cdc.connectors.mysql.source.reader.MySqlSourceReader - Binlog offset on checkpoint 859: {transaction_id=null, ts_sec=1726449952, file=mysql-bin.022296, pos=459680089, kind=SPECIFIC, gtids=15fad577-6501-11ea-b6b2-b8599fae21fa:9456479883-9480246523, row=1, event=2, server_id=31681949}
2024-09-16 09:30:53.037 [Source: MySQL-CDC- -> Calc(select=[id, course_number, clazz_number, subclazz_number, user_id, CAST(status) AS status, CASE(isdel IS NOT NULL, CASE(isdel, 1, 0), null:INTEGER) AS isdel, CAST(create_time) AS create_time, CAST(update_time) AS update_time, enter_status, CAST(join_clazz_time) AS join_clazz_time]) -> NotNullEnforcer(fields=[id]) (1/1)#0] INFO
com.ververica.cdc.connectors.mysql.source.reader.MySqlSourceReader - Binlog offset on checkpoint 860: {transaction_id=null, ts_sec=1726450252, file=mysql-bin.022296, pos=474797741, kind=SPECIFIC, gtids=15fad577-6501-11ea-b6b2-b8599fae21fa:9456479883-9480269403, row=1, event=2, server_id=31681949}



Flink-cdc同步mysql到iceberg丢失数据排查的更多相关文章
- Elasticsearch的快速使用——Spring Boot使用Elastcisearch, 并且使用Logstash同步mysql和Elasticsearch的数据
我主要是给出一些方向,很多地方没有详细说明.当时我学习的时候一直不知道怎么着手,花时间找入口点上比较多,你们可以直接顺着方向去找资源学习. 如果不是Spring Boot项目,那么根据Elastics ...
- MySQL不会丢失数据的秘密,就藏在它的 7种日志里
本文收录在 GitHub 地址 https://github.com/chengxy-nds/Springboot-Notebook 进入正题前先简单看看MySQL的逻辑架构,相信我用的着. MySQ ...
- Canal:同步mysql增量数据工具,一篇详解核心知识点
老刘是一名即将找工作的研二学生,写博客一方面是总结大数据开发的知识点,一方面是希望能够帮助伙伴让自学从此不求人.由于老刘是自学大数据开发,博客中肯定会存在一些不足,还希望大家能够批评指正,让我们一起进 ...
- 电商网站垮IDC数据备份,MySql主从同步,图片及其它数据文件的同步
原文网址:http://www.bzfshop.net/article/180.html 对一个电子商务网站而言,最宝贵的资源就是数据.服务器是很廉价的东西,即使烧了好几个也问题不大,但是用户数据如果 ...
- 基于 MySQL Binlog 的 Elasticsearch 数据同步实践 原
一.背景 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品.订单等数据的多维度检索. 使用 Elasticsearch 存储业务数据可以 ...
- 基于MySQL Binlog的Elasticsearch数据同步实践
一.为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品.订单等数据的多维度检索. 使用 Elasticsearch 存储业务数 ...
- 通过Gearman实现MySQL到Redis的数据同步
对于变化频率非常快的数据来说,如果还选择传统的静态缓存方式(Memocached.File System等)展示数据,可能在缓存的存取上会有很大的开销,并不能很好的满足需要,而Redis这样基于内存的 ...
- 快速同步mysql数据到redis中
MYSQL快速同步数据到Redis 举例场景:存储游戏玩家的任务数据,游戏服务器启动时将mysql中玩家的数据同步到redis中. 从MySQL中将数据导入到Redis的Hash结构中.当然,最直接的 ...
- Gearman + Nodejs + MySQL UDF异步实现 MySQL 到 Redis 的数据同步
[TOC] 1, 环境 CentOS, MySQL, Redis, Nodejs 2, Redis简介 Redis是一个开源的K-V内存数据库,它的key可以是string/set/hash/list ...
- TiDB 作为 MySQL Slave 实现实时数据同步
由于 TiDB 本身兼容绝大多数的 MySQL 语法,所以对于绝大多数业务来说,最安全的切换数据库方式就是将 TiDB 作为现有数据库的从库接在主 MySQL 库的后方,这样对业务方实现完全没有侵入性 ...
随机推荐
- Nuxt.js 应用中的 close 事件钩子
title: Nuxt.js 应用中的 close 事件钩子 date: 2024/12/2 updated: 2024/12/2 author: cmdragon excerpt: close 钩子 ...
- Reverse花指令及反混淆
花指令及反混淆 1.花指令 花指令是反调试的一种基本的方法.其存在是干扰选手静态分析,但不会影响程序的运行.实质就是一串垃圾指令,它与程序本身的功能无关,并不影响程序本身的逻辑.在软件保护中,花指 ...
- ArkTs布局入门03——层叠布局(Stack)
1.概述 叠布局(StackLayout)用于在屏幕上预留一块区域来显示组件中的元素,提供元素可以重叠的布局.层叠布局通过Stack容器组件实现位置的固定定位与层叠,容器中的子元素(子组件)依次入栈, ...
- P11378[GESP202412 七级]燃烧 题解
闲话 花了一个小时. 主要原因:条初始值硬控我半小时,题目看错硬控我半小时(悲). 正文 看题目,就是求从哪个点出发所得到的所有单调下降序列的总长度最长(这个描述好奇怪,不过意思是对的). 题目中说的 ...
- FineReport取消强制分页和调整宽度的设置方法
在decision里,找到管理系统-目录管理,打开相应挂载的报表,在参数设置里,添加以下内容: _bypagesize_ 字符串 false
- 技术漫谈|IVR通用开发框架简说
IVR为Interactive Voice Response的缩写,意为交互式语音应答(系统).它可以应答客户的呼叫,然后为呼叫者提供语音导航或自助服务,呼叫者可通过按键输入或使用语音命令进行选择.随 ...
- 执行docker ps时提示"dial unix /var/run/docker.sock: connect: permission denied"
0. 创建docker用户组 sudo groupadd docker 1. 将当前用户加入docker组 # sudo gpasswd -a $USER docker $ sudo usermod ...
- 实现一个分布式调用(OkHttp+SpringBoot)
很多情况,trace是分布在不同的应用中的,最常用的远程调用方式就是Http. 在这种情况下,我们通常通过增加额外的Http Header传递Trace信息,然后将其组织起来. 本部分通过构建一个目前 ...
- java double转string去除科学计数法"E" 非tostring()和valueOf()
在遇到需要将double类型转换string类型时,会出现转成科学计数法的形式,希望字符串能原样输出.直接使用会报java.lang.Double cannot be cast to java.lan ...
- javax.management.InstanceNotFoundException: org.springframework.boot:type=Admin,name=SpringApplicati
把这两个勾选去掉