前n项结尾0的个数
题目链接:K-卡特兰数_2023河南萌新联赛第(二)场:河南工业大学 (nowcoder.com)
一开始想到和阶乘末尾0的个数一样的题目,但有点不同,根据公式,一开始的重点完全在公式上了,因为前几项的数太大,猜测公式可以化简,但是当时没学组合数学,又不知道怎么化简嘴都一项,就一直卡着。
后面题解发现和阶乘0的个数确实一样,找出2,5因子数目的最小值,可以递推找,因为(4 * n - 2) / (n + 1) 看作是常数的乘积,有共同的前缀, 把相应的因子减掉就是从i - 1到 i 多的因子,最后再求个前缀因子取最小后就是答案
#include<bits/stdc++.h> using namespace std;
using ull = unsigned long long;
using ll = long long;
using PII = pair<int,int>;
#define IOS ios::sync_with_stdio(false),cin.tie(0)
#define endl "\n"
#define pb push_back
const int N=5e6+10;
const int INF=0x3f3f3f3f;
int cnt2[N], cnt5[N]; int main()
{
int n;
cin >> n;
auto f = [&](int x, int t)
{
int res = 0;
while(x % t == 0) res ++, x /= t;
return res;
};
for(int i = 1; i <= n; i ++)
{
cnt2[i] = cnt2[i - 1], cnt5[i] = cnt5[i - 1]; cnt2[i] += f(4 * i - 2, 2);
cnt5[i] += f(4 * i - 2, 5); cnt2[i] -= f(i + 1, 2);
cnt5[i] -= f(i + 1, 5);
}
for(int i = 1; i <= n; i ++) cnt2[i] += cnt2[i - 1], cnt5[i] += cnt5[i - 1];
cout << min(cnt2[n], cnt5[n]);
return 0;
}
前n项结尾0的个数的更多相关文章
- 结尾0的个数(问题来源PythonTip)
给你一个正整数列表 L, 输出L内所有数字的乘积末尾0的个数.(提示:不要直接相乘,数字很多,相乘得到的结果可能会很大). 例如: L=[2,8,3,50], 则输出:2 利用2 和 5 思路: 算各 ...
- 牛客小白月赛6 水题 求n!在m进制下末尾0的个数 数论
链接:https://www.nowcoder.com/acm/contest/135/C来源:牛客网 题目描述 其中,f(1)=1;f(2)=1;Z皇后的方案数:即在Z×Z的棋盘上放置Z个皇后,使其 ...
- 前n项余数个数和
一:O(n) 计算贡献:前n项中,能被i(1~n)整除的数的个数为(n/i)个,,也就是 i 给前n项中(n/i)个数做了余数 #include<iostream> using names ...
- HDU_2011——求多项式的前n项和
Problem Description 多项式的描述如下:1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ...现在请你求出该多项式的前n项的和. Input 输入数据由2行组 ...
- Fibonacci数列前n项值的输出(运用递归算法)
1.斐波那契数列: 又称黄金分割数列,指的是这样一个数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 在数学上,斐波纳契数列以如下被以递归的方法 ...
- 打印Fibonacci数列方法汇总(前20项,每行5个)
NO.1 迭代法 标签:通俗.易懂 思路:先打印第一项.再在循环里面执行fib=fib1+fib2,把fib2赋给fib1,把fib赋给fib2,每行5个可使用if函数(循环次数对5取余). #inc ...
- Java例题_20 前20项之和!
1 /*20 [程序 20 求前 20 项之和] 2 题目:有一分数序列:2/1,3/2,5/3,8/5,13/8,21/13...求出这个数列的前 20 项之和. 3 程序分析:请抓住分子与分母的变 ...
- POJ 2478 Farey Sequence(欧拉函数前n项和)
A - Farey Sequence Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u ...
- 39. 求分数序列前N项和
求分数序列前N项和 #include <stdio.h> int main() { int i, n; double numerator, denominator, item, sum, ...
- 20. 求阶乘序列前N项和
求阶乘序列前N项和 #include <stdio.h> double fact(int n); int main() { int i, n; double item, sum; whil ...
随机推荐
- 2024CSP-S邮寄
前言 去年被沉重打击到了,不过从此以后心态就好很多了,不会因为什么考试动不动就崩溃了. 考前 一直在认真复习,也停了课,甚至差点错过运动会.从国庆开始听了几天课,消化课件,然后考试.考试的稳定性不高, ...
- 又一国产AI爆火!Manus强势炸场,邀请码申请方法,看这一篇就够了!
3月6日凌晨,一款名为Manus的国产AI产品横空出世,迅速霸榜社交平台热搜.其内测邀请码在二手交易平台被炒至5万元天价,甚至出现标价10万元的卖家,我的个乖乖啊. 究竟是什么让Manus如此火爆?今 ...
- 如何调用 DeepSeek 的自然语言处理 API 接口并集成到在线客服系统
我在业余时间开发了一款自己的独立产品:升讯威在线客服与营销系统.陆陆续续开发了几年,从一开始的偶有用户尝试,到如今线上环境和私有化部署均有了越来越多的稳定用户. 随时近来 AI 大模型的火热,越来越多 ...
- docker Get "https://registry-1.docker.io/v2/": x509: certificate is valid for
前言 docker 在进行 build 时,报错:Get "https://registry-1.docker.io/v2/": x509: certificate is vali ...
- Golang 1.16新特性-embed包及其使用
embed 是什么 embed是在Go 1.16中新加入的包.它通过//go:embed指令,可以在编译阶段将静态资源文件打包进编译好的程序中,并提供访问这些文件的能力. 为什么需要 embed 包 ...
- 在Proxmox VE pve中安装windows操作系统——以ltsc2019为例
pve创建ltsc2019还是比较简单的.只是没有virtio驱动的话,选择磁盘的时候找不到磁盘.这里主要是列出如何加载virtio驱动 1.创建虚拟机忽略.注意需要新建2个CDROM.一个为wind ...
- 几款ZooKeeper可视化工具,最后一个美炸了~
首发于公众号:BiggerBoy 欢迎关注,查看更多技术文章 ZooKeeper是我们工作中常用一个开源的分布式协调服务,提供分布式数据一致性解决方案,分布式应用程序可以实现数据发布订阅.负载均衡.命 ...
- 事件监听、焦点--java进阶day03
1.事件 按钮是组件,点击后就会重新游戏 对于这种点击了组件之后,有逻辑触发的操作,就是事件 2.事件中的专有名词 绑定监听也就是绑定监视,是真正组织代码逻辑的地方 要有绑定监听就需要监听器,今天学习 ...
- Scanner的进阶使用——数字的输入
1.用Scanner输入数字(整数和小数) 1.定义一个整数变量 2.建立扫描器 3.使用if 4.建立电脑接收数据 5.设置else(那么)语法 6.关闭Scanner
- 使用Nginx反向代理本地服务(无固定公网IP通过端口映射公开的服务)的坑
使用Nginx反向代理本地服务(无固定公网IP通过端口映射公开的服务)的坑 前言:之前公司的服务器都是云服务器,性能比较差,而我们有一些内部使用的系统和极少数外部用户使用的系统,对资源有一定的要求,也 ...