【Project Euler】530 GCD of Divisors 莫比乌斯反演
【题目】GCD of Divisors
【题意】给定f(n)=Σd|n gcd(d,n/d)的前缀和F(n),n=10^15。
【算法】莫比乌斯反演
【题解】参考:任之洲数论函数.pdf
这个范围显然杜教筛也是做不了的,而且考虑直接化简f(n)也遇到了困难,所以考虑将前缀和的Σ一起化简。
$$F(n)=\sum_{i=1}^{n}\sum_{d|i}(d,\frac{i}{d})$$
这一步很常见的是第一重改为枚举倍数,但这样化简后面就推不下去了。
这道题必须最后转成$\sigma_0(n)$才能解出来。
所以直接枚举gcd值
$$F(n)=\sum_{d=1}^{n}d\sum_{i=1}^{n}\sum_{g|i}[(g,\frac{i}{g})=d]$$
这里gcd(g,i/g)=d,说明i中必须至少包含2个d,那么令i=i/d^2,g即可任取i的因子,最终的g和i/g各乘d即可,所以可以进行如下化简。(关键①)
$$F(n)=\sum_{d=1}^{n}d\sum_{i=1}^{\frac{n}{d^2}}\sum_{g|i}[(g,\frac{i}{g})=1]$$
转化成φ希望不大,所以直接莫比乌斯反演。
$$F(n)=\sum_{d=1}^{n}d\sum_{i=1}^{\frac{n}{d^2}}\sum_{g|i}\sum_{d'|g \cap d'|\frac{i}{g}}\mu(d')$$
$$F(n)=\sum_{d=1}^{n}\sum_{d'=1}^{n}d*\mu(d')\sum_{i=1}^{\frac{n}{d^2}}\sum_{g|i}[d'|g \cap d'|\frac{i}{g}]$$
这里和上面一样,都是要求d'|g&&d'|i/g,因此从i中提取2个d',即令i=i/d'^2。
$$F(n)=\sum_{d=1}^{n}\sum_{d'=1}^{n}d*\mu(d')\sum_{i=1}^{\frac{n}{(dd')^2}}\sum_{g|i}1$$
会发现后面是约数个数。(关键②)
$$F(n)=\sum_{d=1}^{n}\sum_{d'=1}^{n}d*\mu(d')\sum_{i=1}^{\frac{n}{(dd')^2}}\sigma_0(i)$$
前面部分发现d*μ(d')好像可以卷积到φ,考虑合并dd‘来构造卷积,令d=dd'。(关键③)
$$F(n)=\sum_{d=1}^{\sqrt{n}}\sum_{g|d}g*\mu(\frac{n}{g})\sum_{i=1}^{\frac{n}{(dd')^2}}\sigma_0(i)$$
这里d只枚举到√n,因为d>√n时后面的Σ=0,没有贡献。因此可以缩小实际枚举范围。(关键④)
然后根据狄利克雷卷积μ*id=φ可以化简
$$F(n)=\sum_{d=1}^{\sqrt{n}}\varphi(d)\sum_{i=1}^{\frac{n}{(dd')^2}}\sigma_0(i)$$
大功告成!
其中,约数个数的前缀和可以进行分块取值优化,如下
$$\sum_{i=1}^{n}\sigma_0(i)=\sum_{i=1}^{n}\sum_{d|i}1=\sum_{i=1}^{n}\sum_{j=1}^{\frac{n}{i}}1$$
$$\sum_{i=1}^{n}\sigma_0(i)=\sum_{i=1}^{n}\left \lfloor \frac{n}{i} \right \rfloor$$
然后线性筛φ的过程中求解即可。
复杂度分析:
$$\sum_{i=1}^{\sqrt{n}}O(\sqrt{\frac{n}{i^2}})=\sum_{i=1}^{\sqrt{n}}O(\frac{\sqrt{n}}{i})=O(\sqrt{n} ln \sqrt{n})$$
倒数第二步将√n提到最外面,Σ内就是调和数列,和近似为ln n。
#include<cstdio>
#include<cmath>
#define int long long
const int maxn=;
int phi[maxn],n,prime[maxn],tot;
int solve(int n){
int pos,sum=;
for(int i=;i<=n;i=pos+){
pos=n/(n/i);
sum+=(pos-i+)*(n/i);
}
return sum;
}
#undef int
int main(){
#define int long long
scanf("%lld",&n);
int ans=*solve(n),N=(int)sqrt(n)+;phi[]=;//
for(int i=;i<=N;i++){
if(!phi[i])phi[prime[++tot]=i]=i-;
for(int j=;j<=tot&&i*prime[j]<=N;j++){
if(i%prime[j]==){phi[i*prime[j]]=phi[i]*prime[j];break;}
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
ans+=phi[i]*solve(n/(i*i));
}
printf("%lld",ans);
return ;
}
【Project Euler】530 GCD of Divisors 莫比乌斯反演的更多相关文章
- 【CJOJ2512】gcd之和(莫比乌斯反演)
		
[CJOJ2512]gcd之和(莫比乌斯反演) 题面 给定\(n,m(n,m<=10^7)\) 求 \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\] 题解 首先把公因数直 ...
 - bnu——GCD SUM (莫比乌斯反演)
		
题目:GCD SUM 题目链接:http://www.bnuoj.com/v3/problem_show.php?pid=39872 算法:莫比乌斯反演.优化 #include<stdio.h& ...
 - GCD HDU - 1695   莫比乌斯反演入门
		
题目链接:https://cn.vjudge.net/problem/HDU-1695#author=541607120101 感觉讲的很好的一个博客:https://www.cnblogs.com/ ...
 - HDU - 4675 GCD of Sequence (莫比乌斯反演+组合数学)
		
题意:给出序列[a1..aN],整数M和k,求对1-M中的每个整数d,构建新的序列[b1...bN],使其满足: 1. \(1 \le bi \le M\) 2. \(gcd(b 1, b 2, -, ...
 - [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)
		
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...
 - 【HDU4947】GCD Array(莫比乌斯反演+树状数组)
		
点此看题面 大致题意: 一个长度为\(n\)的数组,实现两种操作:将满足\(gcd(i,k)=d\)的\(a_i\)加上\(v\),询问\(\sum_{i=1}^xa_i\). 对于修改操作的推式子 ...
 - 数学--数论--HDU 4675 GCD of Sequence(莫比乌斯反演+卢卡斯定理求组合数+乘法逆元+快速幂取模)
		
先放知识点: 莫比乌斯反演 卢卡斯定理求组合数 乘法逆元 快速幂取模 GCD of Sequence Alice is playing a game with Bob. Alice shows N i ...
 - UOJ#33. 【UR #2】树上GCD   点分治 莫比乌斯反演
		
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ33.html 题解 首先我们把问题转化成处理一个数组 ans ,其中 ans[i] 表示 d(u,a) 和 ...
 - 51nod 1594 Gcd and Phi(莫比乌斯反演)
		
题目链接 传送门 思路 如果这题是这样的: \[ F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}\phi(gcd(i,j)) \] 那么我们可能会想到下 ...
 
随机推荐
- 使用Logstash同步数据至Elasticsearch,Spring Boot中集成Elasticsearch实现搜索
			
安装logstash.同步数据至ElasticSearch 为什么使用logstash来同步,CSDN上有一篇文章简要的分析了以下几种同步工具的优缺点:https://blog.csdn.net/la ...
 - PAT 甲级 1043 Is It a Binary Search Tree
			
https://pintia.cn/problem-sets/994805342720868352/problems/994805440976633856 A Binary Search Tree ( ...
 - 判断一个变量是不是json,以及如何将变量转换成json
			
https://blog.csdn.net/A123638/article/details/52486975这里看到一个很好的方法 // 判断变量是不是jsonisJson(variable: any ...
 - Java ISO 8601时间格式转换
			
common-lang包: String pattern = "YYYY-MM-dd'T'HH:mm:ssZZ"; System.out.println(DateFormatUti ...
 - 【bzoj5173】[Jsoi2014]矩形并  扫描线+二维树状数组区间修改区间查询
			
题目描述 JYY有N个平面坐标系中的矩形.每一个矩形的底边都平行于X轴,侧边平行于Y轴.第i个矩形的左下角坐标为(Xi,Yi),底边长为Ai,侧边长为Bi.现在JYY打算从这N个矩形中,随机选出两个不 ...
 - 【hdu6072】Logical Chain
			
Kosaraju算法,然後bitset優化 主要是學習一下自寫bitset的姿勢 #include<cstring> #include<algorithm> #include& ...
 - 洛谷P4606  [SDOI2018]战略游戏  【圆方树 + 虚树】
			
题目链接 洛谷P4606 双倍经验:弱化版 题解 两点之间必经的点就是圆方树上两点之间的圆点 所以只需建出圆方树 每次询问建出虚树,统计一下虚树边上有多少圆点即可 还要讨论一下经不经过根\(1\)的情 ...
 - redis 命令行客户端utf8中文乱码问题
			
只需要你在启动redis-cli时在其后面加上--raw参数即可启动后 再显示就正常了
 - bzoj2213: [Poi2011]Difference(思维题)
			
今天颓了一天T T 这题有两种写法... ①预处理出每种字符在原字符串中的位置,枚举两种字符作为最大值和最小值,把这两种字符的坐标归并排序,把最大值设为1,最小值设为-1,求最大子段和.注意因为 ...
 - 【树链剖分换根】P3979 遥远的国度
			
Description zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度.当zcwwzdjn准备进入遥远的国度继续追杀时,守护神RapiD阻拦了zcwwzdjn的去路,他需要zcw ...