n个人写m行代码,第i人写一行代码有a[i]个bug,问总bug数不超过b的不同方案数。

其实就是个背包,dp[i][j][k]代表前i个人写了j行代码用了k个bug限度,然后随便转移一下就好了

/** @Date    : 2017-08-27 21:13:25
* @FileName: C 完全背包DP.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; LL dp[600][600];
LL v[600];
LL mod, n, m, b;
int main()
{
while(cin >> n >> m >> b >> mod)
{
for(int i = 0; i < n; i++)
scanf("%lld", v + i);
MMF(dp);
dp[0][0] = 1;
for(int i = 0; i < n; i++)
{
for(int j = 1; j <= m; j++)
{
for(int k = 0; k <= b; k++)
{
if(k < v[i])
continue;
dp[j][k] = (dp[j][k] + dp[j - 1][k - v[i]] + mod) % mod;
}
}
}
LL ans = 0;
for(int i = 0; i <= b; i++)
ans = (ans + dp[m][i] + mod) % mod;
printf("%lld\n", ans);
}
return 0;
}

CF544 C 背包 DP的更多相关文章

  1. 背包dp整理

    01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...

  2. hdu 5534 Partial Tree 背包DP

    Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

  3. HDU 5501 The Highest Mark 背包dp

    The Highest Mark Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  4. Codeforces Codeforces Round #319 (Div. 2) B. Modulo Sum 背包dp

    B. Modulo Sum Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/577/problem/ ...

  5. noj [1479] How many (01背包||DP||DFS)

    http://ac.nbutoj.com/Problem/view.xhtml?id=1479 [1479] How many 时间限制: 1000 ms 内存限制: 65535 K 问题描述 The ...

  6. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  7. BZOJ 1004: [HNOI2008]Cards( 置换群 + burnside引理 + 背包dp + 乘法逆元 )

    题意保证了是一个置换群. 根据burnside引理, 答案为Σc(f) / (M+1). c(f)表示置换f的不动点数, 而题目限制了颜色的数量, 所以还得满足题目, 用背包dp来计算.dp(x,i, ...

  8. G - Surf Gym - 100819S -逆向背包DP

    G - Surf Gym - 100819S 思路 :有点类似 逆向背包DP , 因为这些事件发生后是对后面的时间有影响. 所以,我们 进行逆向DP,具体 见代码实现. #include<bit ...

  9. 树形DP和状压DP和背包DP

    树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次 ...

随机推荐

  1. 个人作业四:注册github

    注册Github账户 账户名称:liurunhan Github地址:https://github.com/liurunhan

  2. OOP 1.4 内联函数和重载函数函数参数缺省值

    1.内联函数 存在的背景:函数调用存在开销(调用时候参数压栈,返回地址压栈:返回时从栈取出返回地址,跳转到返回地址.总共需要几条指令的开销).如果函数指令较少,调用多次,函数调用的开销占比大. 内联函 ...

  3. CodeForces 57C Array 组合计数+逆元

    题目链接: http://codeforces.com/problemset/problem/57/C 题意: 给你一个数n,表示有n个数的序列,每个数范围为[1,n],叫你求所有非降和非升序列的个数 ...

  4. 我是IT小小鸟读书笔记

    阅读了我是IT小小鸟后发现,自己开发程序是真的很苦难的,在现在这个空对空的时期,我们学习到大部分的全都是理论知识,而没有真正的去进行实践.没有经过实践,我们在程序开发过程中也就无法发现自身的困难. 在 ...

  5. Java中的网络编程-3

    用户数据协议(UDP)是网络信息传输的另外一种形式, 基于UDP的通信不同于基于TCP的通信, 基于UDP的信息传递更快, 但是不提供可靠的保证. 使用UDP传输数据时, 用户无法知道数据能否正确地到 ...

  6. CentOS 7 网卡命名修改为eth0格式

    Linux 操作系统的网卡设备的传统命名方式是 eth0.eth1.eth2等,而 CentOS7 提供了不同的命名规则,默认是基于固件.拓扑.位置信息来分配.这样做的优点是命名全自动的.可预知的,缺 ...

  7. 11月14号站立会议(从即日14号起到24号截至为final阶段工作期)

    小组名称:飞天小女警 项目名称:礼物挑选小工具 小组成员:沈柏杉(组长).程媛媛.杨钰宁.谭力铭 代码地址:HTTPS:https://git.coding.net/shenbaishan/GIFT. ...

  8. MAVEN pom.xml 解读

    POM全称是Project Object  Model,即项目对象模型.pom.xml是maven的项目描述文件,它类似与antx的project.xml文件.pom.xml文件以xml的 形式描述项 ...

  9. websocket服务器+客户端

    <?php $demo = new ws('192.168.90.47',12345); $demo->run(); class ws { //当前服务端主连接 private $curr ...

  10. angularjs 指令间相互调用

    <div ng-app="app"> <div ng-controller="myctl"> <button superman s ...