http://www.lydsy.com/JudgeOnline/problem.php?id=1649

又是题解。。。

设f[i][j]表示费用i长度j得到的最大乐趣

f[i][end[a]]=max{f[i-cost[a][begin[a]]+w[a]} 当f[i-cost[a][begin[a]]可行时

初始化f=-1

f[0][0]=0

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=10005, M=1005;
struct dat { int x, w, f, c; } a[N];
inline const bool cmp(const dat &a, const dat &b) { return a.x<b.x; }
int f[M][M], n, l, m;
int main() {
read(l); read(n); read(m);
for1(i, 1, n) read(a[i].x), read(a[i].w), read(a[i].f), read(a[i].c);
sort(a+1, a+1+n, cmp);
int ans=-1;
CC(f, -1); f[0][0]=0;
for1(i, 1, n) {
int x=a[i].x, c=a[i].c, e=x+a[i].w, ff=a[i].f;
for1(j, c, m) if(f[j-c][x]!=-1) f[j][e]=max(f[j][e], f[j-c][x]+ff);
}
for1(i, 1, m) ans=max(f[i][l], ans);
print(ans);
return 0;
}

Description

The cows are building a roller coaster! They want your help to design as fun a roller coaster as possible, while keeping to the budget. The roller coaster will be built on a long linear stretch of land of length L (1 <= L <= 1,000). The roller coaster comprises a collection of some of the N (1 <= N <= 10,000) different interchangable components. Each component i has a fixed length Wi (1 <= Wi <= L). Due to varying terrain, each component i can be only built starting at location Xi (0 <= Xi <= L-Wi). The cows want to string together various roller coaster components starting at 0 and ending at L so that the end of each component (except the last) is the start of the next component. Each component i has a "fun rating" Fi (1 <= Fi <= 1,000,000) and a cost Ci (1 <= Ci <= 1000). The total fun of the roller coster is the sum of the fun from each component used; the total cost is likewise the sum of the costs of each component used. The cows' total budget is B (1 <= B <= 1000). Help the cows determine the most fun roller coaster that they can build with their budget.

奶牛们正打算造一条过山车轨道.她们希望你帮忙,找出最有趣,但又符合预算 的方案.  过山车的轨道由若干钢轨首尾相连,由x=0处一直延伸到X=L(1≤L≤1000)处.现有N(1≤N≤10000)根钢轨,每根钢轨的起点 Xi(0≤Xi≤L- Wi),长度wi(l≤Wi≤L),有趣指数Fi(1≤Fi≤1000000),成本Ci(l≤Ci≤1000)均己知.请确定一 种最优方案,使得选用的钢轨的有趣指数之和最大,同时成本之和不超过B(1≤B≤1000).

Input

* Line 1: Three space-separated integers: L, N and B.

* Lines 2..N+1: Line i+1 contains four space-separated integers, respectively: Xi, Wi, Fi, and Ci.

    第1行输入L,N,B,接下来N行,每行四个整数Xi,wi,Fi,Ci.

Output

* Line 1: A single integer that is the maximum fun value that a roller-coaster can have while staying within the budget and meeting all the other constraints. If it is not possible to build a roller-coaster within budget, output -1.

Sample Input

5 6 10
0 2 20 6
2 3 5 6
0 1 2 1
1 1 1 3
1 2 5 4
3 2 10 2

Sample Output

17
选用第3条,第5条和第6条钢轨

HINT

Source

【BZOJ】1649: [Usaco2006 Dec]Cow Roller Coaster(dp)的更多相关文章

  1. 【动态规划】bzoj1649 [Usaco2006 Dec]Cow Roller Coaster

    很像背包. 这种在一个数轴上进行操作的题常常需要对区间排序. f[i][j]表示距离到i时,花费为j时的权值之和. f[x[i]+l[i]][j+c[i]]=max{f[x[i]][j]+w[i]}( ...

  2. 【BZOJ】2101: [Usaco2010 Dec]Treasure Chest 藏宝箱(dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2101 这个dp真是神思想orz 设状态f[i, j]表示i-j先手所拿最大值,注意,是先手 所以转移 ...

  3. BZOJ 1649: [Usaco2006 Dec]Cow Roller Coaster( dp )

    有点类似背包 , 就是那样子搞... --------------------------------------------------------------------------------- ...

  4. BZOJ——1649: [Usaco2006 Dec]Cow Roller Coaster

    http://www.lydsy.com/JudgeOnline/problem.php?id=1649 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 7 ...

  5. bzoj 1649: [Usaco2006 Dec]Cow Roller Coaster【dp】

    DAG上的dp 因为本身升序就是拓扑序,所以建出图来直接从1到ndp即可,设f[i][j]为到i花费了j #include<iostream> #include<cstdio> ...

  6. 【BZOJ】1648: [Usaco2006 Dec]Cow Picnic 奶牛野餐(dfs)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1648 水题.. dfs记录能到达的就行了.. #include <cstdio> #in ...

  7. 【BZOJ】1606: [Usaco2008 Dec]Hay For Sale(背包)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1606 越来越水了T_T 这题两种做法,一个正规01背包,价值就是体积 还有一种是非正规背包,即 if ...

  8. 【BZOJ】1653: [Usaco2006 Feb]Backward Digit Sums(暴力)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1653 看了题解才会的..T_T 我们直接枚举每一种情况(这里用next_permutation,全排 ...

  9. 【BZOJ】1627: [Usaco2007 Dec]穿越泥地(bfs)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1627 裸bfs不解释.. #include <cstdio> #include < ...

随机推荐

  1. vb 获取打印机名称

    Const HKLM = &H80000002 '定义根键常数 '其他常用根键 Const HKCR = &H80000000 , Const HKCU = &H8000000 ...

  2. Android获取手机位置代码实现

    1.项目Src下创建...service包,然后新建GPSService类 package com.zebra.mobilesafe.service; import java.io.IOExcepti ...

  3. 【Linux】df命令

    用途 df命令主要用于检查Linux服务器的文件系统的磁盘空间占用情况 全称 df的全称为:Disk Free 参数 -a :全部文件系统列表 -h :方便阅读显示 -H :等于"-h&qu ...

  4. Android自动化框架

    Android自动化框架 已有 2085 次阅读2014-8-26 12:19 | Android 几种常见的Android自动化测试框架及其应用 随着Android应用得越来越广,越来越多的公司推出 ...

  5. websphere设置jvm参数

    http://www.quiee.com.cn/archives/592/ websphere 选择服务器-> 应用程序服务器-> Server1-> 进程定义->Java 虚 ...

  6. android系统特效详解和修改方法

    安卓系统特效相关文件:  存在于:framework-res.apk   反编译后的\framework-res\res\anim文件夹内!anim文件夹下所有的文件都是特效文件原理  反编译fram ...

  7. 导入项目出现: Unable to resolve target ‘android-10′ 解决办法

    进入到android项目根目录下,打开项目文件project.properties ,修改 target=android-10  的值.把10改为当前虚拟机API level的版本即可.我这里改为17 ...

  8. 使用Open Live Writer写博客

    1. 下载安装软件 安装包路径http://openlivewriter.org/ 2.配置 打开软件后会提示你配置博客账号地址 3.安装代码高亮插件 下载插件源代码https://pan.baidu ...

  9. 如何编写安全的PHP代码

    转于:http://www.nowamagic.net/php/php_HowToWriteSafePhpCode.php

  10. Openresty支持HTTP2

    1. 下载openresty-1.13.6.1.tar.gz和openssl-1.0.2l.tar.gz,并解压 下载对应的软件版本,创建openresty_http2安装路径 2. 安装openre ...