http://www.lydsy.com/JudgeOnline/problem.php?id=1009

好神的题orzzzzzzzzzz

首先我是连递推方程都想不出的人。。。一直想用组合来搞。。看来我是sb。。

设f[i,j]表示前i个字符匹配了前j个不吉利数字的方案,即i-j+1~i都是不吉利数字

那么答案就是sigma{f[n,i], 0<=i<m}

转移是

f[i+1,k]=sum{f[i, j],枚举i+1的字符后,k是i+1字符和不吉利数字匹配1~k,0<=k<=j}

发现k可以由kmp一样的适配数组得到

而我们发现,每一个阶段i~i+1的转移都是枚举i+1然后找j的失配,也就是说,所有的转移都是一样的。

方程又是求和,那么可以考虑矩阵乘法优化(orzzzzz

即根据

$$c[i,j]=\sum a[i,k] \times b[k,j]$$

则状态f[i+1]和f[i]的矩阵转移可看做

$$f_{i+1}[1, j]=\sum f_{i}[1,k] \times A[k, j]$$

所以我们可以逆推出矩阵$A$,即它表示的意思是从k转移到j上的倍数

所以我们可以kmp一次不吉利数字,求出$A$,然后就可以矩乘logn求出$A^n$做出本题

最后的答案是求出的$A^n$后,乘上$f_{1}$得到$f_n$然后累计$f_n[1, i], 0<=i<m$

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=22;
typedef int mtx[N][N];
mtx a, t, f, b;
int n, m, MD, p[N];
char s[N];
void mul(mtx a, mtx b, mtx c, int la, int lb, int lc) {
rep(i, la) rep(j, lc) {
t[i][j]=0;
rep(k, lb) t[i][j]=(t[i][j]+(a[i][k]*b[k][j])%MD)%MD;
}
rep(i, la) rep(j, lc) c[i][j]=t[i][j];
}
int main() {
read(n); read(m); read(MD);
scanf("%s", s+1);
int j=0;
for(int i=2; i<=m; ++i) {
while(j && s[i]!=s[j+1]) j=p[j];
if(s[i]==s[j+1]) ++j;
p[i]=j;
}
rep(i, m) for1(k, 0, 9) {
j=i;
while(j && s[j+1]-'0'!=k) j=p[j];
if(s[j+1]-'0'==k) ++j;
if(j<m) a[i][j]=(a[i][j]+1)%MD;
}
rep(i, m) b[i][i]=1;
while(n) {
if(n&1) mul(b, a, b, m, m, m);
mul(a, a, a, m, m, m);
n>>=1;
}
int ans=0;
f[0][0]=1;
mul(f, b, f, 1, m, m);
rep(i, m) ans=(ans+f[0][i])%MD;
print(ans);
return 0;
}

  


Description

阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为0

Input

第一行输入N,M,K.接下来一行输入M位的数。 100%数据N<=10^9,M<=20,K<=1000 40%数据N<=1000 10%数据N<=6

Output

阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

Sample Input

4 3 100
111

Sample Output

81

HINT

 

Source

【BZOJ】1009: [HNOI2008]GT考试(dp+矩阵乘法+kmp+神题)的更多相关文章

  1. BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )

    写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...

  2. 洛谷P3193 [HNOI2008]GT考试(dp 矩阵乘法)

    题意 题目链接 Sol 设\(f[i][j]\)表示枚举到位置串的第i位,当前与未知串的第j位匹配,那么我们只要保证在转移的时候永远不会匹配即可 预处理出已知串的每个位置加上某个字符后能转移到的位置, ...

  3. BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法

    BZOJ_1009_[HNOI2008]GT考试_KMP+矩阵乘法 Description 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考 ...

  4. BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4266  Solved: 2616[Submit][Statu ...

  5. bzoj 1009: [HNOI2008]GT考试 -- KMP+矩阵

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MB Description 阿申准备报名参加GT考试,准考证号为N位数X1X2.. ...

  6. [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】

    题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...

  7. bzoj 1009 [HNOI2008]GT考试(DP+KMP+矩阵乘法)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1009 [题意] 给定一个字符串T,问长度为n且不包含串T的字符串有多少种. [思路] ...

  8. BZOJ 1009 [HNOI2008]GT考试 (KMP+矩阵乘法)

    ---恢复内容开始--- 题目大意:给定一个由数字构成的字符串A(len<=20),让你选择一个长度为n(n是给定的)字符串X,一个合法的字符串X被定义为,字符串X中不存在任何一段子串与A完全相 ...

  9. BZOJ 1009 HNOI2008 GT考试 KMP算法+矩阵乘法

    标题效果:给定的长度m数字字符串s.求不包括子s长度n数字串的数目 n<=10^9 看这个O(n)它与 我们不认为这 令f[i][j]长度i号码的最后的字符串j位和s前者j数字匹配方案 例如,当 ...

随机推荐

  1. Java多线程具体解释

    Java多线程具体解释 多线程简单介绍 概述 多线程(multithreading).是指从软件或者硬件上实现多个线程并发运行的技术.具有多线程能力的计算机因有硬件支持而可以在同一时间运行多于一个线程 ...

  2. 编程算法 - 翻转单词顺序 代码(C)

    翻转单词顺序 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 输入一个英文句子, 翻转句子中单词的顺序, 但单词内字符的顺序不变. 首先翻转(r ...

  3. 51单片机晶振11.0592M延时函数

    /********************************************** º¯ÊýÃû£ºdelay_ms(uint z) ÑÓʱº¯Êý(12MHZ¾§Õñ) ´Ëº¯ÊýÑ ...

  4. python 中 numpy array 中的维度

    简介 numpy 创建的数组都有一个shape属性,它是一个元组,返回各个维度的维数.有时候我们可能需要知道某一维的特定维数. 二维情况 >>> import numpy as np ...

  5. Mysql使用大全 从基础到存储过程

    平常习惯了phpmyadmin等其他工具的的朋友有的根本就不会命令,如果让你笔试去面试我看你怎么办,所以,学习一下还是非常有用的,也可以知道你通过GUI工具的时候工具到底做了什么.Mysql用处很广, ...

  6. Atitit.故障排除系列---php 程序网站数据库错误排除流程

    Atitit.故障排除系列---php 程序网站数据库错误排除流程 Php页面报告的错误不能定位到myusql的db配置上...字说是db conn err Mysql 接入错误...大概查看哈能不能 ...

  7. CGROUP相关知识

    安装 CentOS 6 yum install libcgroup CentOS 7 yum install libcgroup-tools 使用 默认情况下有几个控制器可以进行限制,分别是 cpus ...

  8. 进程控制函数(2)-setpgid() 修改当前进程的进程组ID

    定义:int setpgid(pid_t pid,pid_t pgid); 表头文件:#include<unistd.h> 说明:setpgid()将参数pid 指定进程所属的组识别码设为 ...

  9. WebSocket请求过程分析及实现Web聊天室

    WebSocket协议是基于TCP的一种新的协议.WebSocket最初在HTML5规范中被引用为TCP连接,作为基于TCP的套接字API的占位符.它实现了浏览器与服务器全双工(full-duplex ...

  10. Vs code 通用插件

    Vs code 通用插件 转自:https://segmentfault.com/a/1190000006697219 HTML Snippets 超级实用且初级的 H5代码片段以及提示 HTML C ...