http://en.wikipedia.org/wiki/Surface-mount_technology

Surface-mount technology (SMT) is a method for producing electronic circuits in which the components are mounted or placed directly onto the surface of printed circuit boards (PCBs).

An electronic device so made is called a surface-mount device (SMD).

In the industry it has largely replaced the through-hole technology construction method of fitting components with wire leads into holes in the circuit board.

Both technologies can be used on the same board for components not suited to surface mounting such as large transformers and heat-sinked power semiconductors.

An SMT component is usually smaller than its through-hole counterpart because it has either smaller leads or no leads at all. It may have short pins or leads of various styles, flat contacts, a matrix of solder balls (BGAs), or terminations on the body of the component.

Because "surface-mount" refers to a methodology of manufacturing, there are different terms used when referring to the different aspect of the method, which distinguishes for example the components, technique and machines used in manufacturing. These terms are listed in the following table:

SMp term Expanded form
SMD Surface-mount devices (active, passive and electromechanical components)
SMT Surface-mount technology (assembling and mounting technology)
SMA Surface-mount assembly (module assembled with SMT)
SMC Surface-mount components (components for SMT)
SMP Surface-mount packages (SMD case forms)
SME Surface-mount equipment (SMT assembling machines)

Surface-mount components are usually smaller than their counterparts with leads, and are designed to be handled by machines rather than by humans. The electronics industry has standardized package shapes and sizes (the leading standardisation body is JEDEC). These include:

The codes given in the chart below usually tell the length and width of the components in tenths of millimeters or hundredths of inches.

For example, a metric 2520 component is 2.5mm by 2.0mm which corresponds roughly to .10 inches by .08 inches (hence, imperial size is 1008).

Exceptions occur for imperial in the two smallest rectangular passive sizes. The metric codes still represent the dimensions in mm, even though the imperial size codes are no longer aligned.

Problematically, some manufacturers are developing metric components with dimensions of name is already being used for the 0.4 mm × 0.2 mm (0.016 in × 0.0079 in) package.

Example of component sizes, metric and imperial codes and comparison included

  • Two-terminal packages

    • Rectangular passive components (mostly resistors and capacitors):

      • 01005 (0402 metric): 0.4 mm × 0.2 mm (0.016 in × 0.0079 in). Typical power rating for resistors = 0.031 watt[8]
      • 0201 (0603 metric): 0.6 mm × 0.3 mm (0.024 in × 0.012 in). Typical power rating for resistors = 0.05 watt[8]
      • 0402 (1005 metric): 1.0 mm × 0.5 mm (0.039 in × 0.020 in). Typical power rating for resistors = 0.1 [8]or 0.062 watt[9]
      • 0603 (1608 metric): 1.6 mm × 0.8 mm (0.063 in × 0.031 in). Typical power rating for resistors = 0.1 watt[8]
      • 0805 (2012 metric): 2.0 mm × 1.25 mm (0.079 in × 0.049 in). Typical power rating for resistors = 0.125 watt[8]
      • 1008 (2520 metric): 2.5 mm × 2.0 mm (0.098 in × 0.079 in). Typical inductor and ferrite bead package[10]
      • 1206 (3216 metric): 3.2 mm × 1.6 mm (0.13 in × 0.063 in). Typical power rating for resistors = 0.25 watt[8]
      • 1210 (3225 metric): 3.2 mm × 2.5 mm (0.13 in × 0.098 in). Typical power rating for resistors = 0.5 watt[8]
      • 1806 (4516 metric): 4.5 mm × 1.6 mm (0.18 in × 0.063 in)[11]
      • 1812 (4532 metric): 4.5 mm × 3.2 mm (0.18 in × 0.13 in). Typical power rating for resistors = 0.75 watt[8]
      • 2010 (5025 metric): 5.0 mm × 2.5 mm (0.20 in × 0.098 in). Typical power rating for resistors = 0.75 watt[8]
      • 2512 (6332 metric): 6.4 mm × 3.2 mm (0.25 in × 0.13 in). Typical power rating for resistors = 1 watt[8]
      • 2920: 7.4 mm × 5.1 mm (0.29 in × 0.20 in)[12]






    • Tantalum capacitors length (typ.) x width (typ.) x height (max.):[13][14]
      • EIA 2012-12 (Kemet R, AVX R): 2.0 mm × 1.3 mm × 1.2 mm
      • EIA 3216-10 (Kemet I, AVX K): 3.2 mm × 1.6 mm × 1.0 mm
      • EIA 3216-12 (Kemet S, AVX S): 3.2 mm × 1.6 mm × 1.2 mm
      • EIA 3216-18 (Kemet A, AVX A): 3.2 mm × 1.6 mm × 1.8 mm
      • EIA 3528-12 (Kemet T, AVX T): 3.5 mm × 2.8 mm × 1.2 mm
      • EIA 3528-21 (Kemet B, AVX B): 3.5 mm × 2.8 mm × 2.1 mm
      • EIA 6032-15 (Kemet U, AVX W): 6.0 mm × 3.2 mm × 1.5 mm
      • EIA 6032-28 (Kemet C, AVX C): 6.0 mm × 3.2 mm × 2.8 mm
      • EIA 7260-38 (Kemet E, AVX V): 7.3 mm × 6.0 mm × 3.8 mm
      • EIA 7343-20 (Kemet V, AVX Y): 7.3 mm × 4.3 mm × 2.0 mm
      • EIA 7343-31 (Kemet D, AVX D): 7.3 mm × 4.3 mm × 3.1 mm
      • EIA 7343-43 (Kemet X, AVX E): 7.3 mm × 4.3 mm × 4.3 mm




        http://www.digikey.com/Web%20Export/Supplier%20Content/Kemet_399/PDF/Kemet_TantalumSMCap.pdf

    • Aluminium capacitors:[15][16][17]
      • (Panasonic A, Chemi-Con B): 3.3 mm × 3.3 mm
      • (Panasonic B, Chemi-Con D): 4.3 mm × 4.3 mm
      • (Panasonic C, Chemi-Con E): 5.3 mm × 5.3 mm
      • (Panasonic D, Chemi-Con F): 6.6 mm × 6.6 mm
      • (Panasonic E/F, Chemi-Con H): 8.3 mm × 8.3 mm
      • (Panasonic G, Chemi-Con J): 10.3 mm × 10.3 mm
      • (Chemi-Con K): 13.0 mm × 13.0 mm
      • (Panasonic H): 13.5 mm × 13.5 mm
      • (Panasonic J, Chemi-Con L): 17.0 mm × 17.0 mm
      • (Panasonic K, Chemi-Con M): 19.0 mm × 19.0 mm





    • Power Inductor
      • (Panasonic A, Chemi-Con B): 3.3 mm × 3.3 mm

        LBS Series SMD Power Inductors




         MS Series SMD Power Inductors

        MS103R/104R/105R





        PBS Series SMD Power Inductors


        PIS Series SMD Power Inductors


        PS-D Series SMD Power Inductors




        PIO SERIES SMD POWER INDUCTORS


        PBO SERIES SMD POWER INDUCTORS
        PBO-M SERIES SMD POWER INDUCTORS


        PBO-M SERIES SMD POWER INDUCTORS

    • SOD: Small Outline Diode

      http://www.soselectronic.cz/a_info/resource/b/diotec/smd-discretes.pdf

      http://www.vishay.com/diodes/

      • SOD-723: 1.4 × 0.6 × 0.59 mm [18]

      • SOD-523: 1.25 × 0.85 × 0.65 mm [19]

      • SOD-323 (SC-90): 1.7 × 1.25 × 0.95 mm [20]


      • SOD-128: 5 × 2.7 × 1.1 mm [21]


      • SOD-123: 3.68 × 1.17 × 1.60 mm [22]



      • SOD-80C: 3.50 × 1.50 × More info [23]


    • MELF (Metal Electrode Leadless Face): mostly resistors and diodes; barrel shaped components,
      dimensions do not match those of rectangular references for identical codes.
      • MicroMelf (MMU) Size 0102: length: 2.2 mm, diam.: 1.1 mm. Typical rating for resistors = 0.2 to 0.3 watt / 150 V[24]



      • MiniMelf (MMA) Size 0204: length: 3.6 mm, diam.: :1.4 mm. Typical rating for resistors = 0.25 to 0.4 watt / 200 V[24]
      • Melf (MMB) Size 0207: length: 5.8 mm, diam.: 2.2 mm. Typical rating for resistors = 0.4 to 1 watt / 300 V[24]
  • Three-terminal packages
    • SOT: Small Outline Transistor, three terminals

      • SOT-223 (SC-73): 6.7 mm × 3.7 mm × 1.8 mm body: four terminals, one of which is a large heat-transfer pad [25]


      • SOT-223-6

      • SOT-89: 4.5 mm × 2.5 mm × 1.5 mm body: four terminals, center pin is connected to a large heat-transfer pad [26]




      • SOT89-5


      • SOT-23 (SC-59, TO-236-3): 2.9 mm × 1.3/1.75 mm × 1.3 mm body: three terminals for a transistor [27]
      • SOT-323 (SC-70): 2 mm × 1.25 mm × 0.95 mm body: three terminals [28]
      • SOT-416 (SC-75): 1.6 mm × 0.8 mm × 0.8 mm body: three terminals [29]
      • SOT-663: 1.6 mm × 1.6 mm × 0.55 mm body: three terminals [30]
      • SOT-723: 1.2 mm × 0.8 mm × 0.5 mm body: three terminals: flat lead[31]
      • SOT-883 (SC-101): 1 mm × 0.6 mm × 0.5 mm body: three terminals: leadless [32]
    • DPAK (TO-252, SOT-428): Discrete Packaging.
      Developed by Motorola to house higher powered devices. Comes in three- or five-terminal versions [33]
    • D2PAK (TO-263, SOT-404): bigger than the DPAK;
      basically a surface mount equivalent of the TO220 through-hole package.
      Comes in 3, 5, 6, 7, 8 or 9-terminal versions [34]
    • D3PAK (TO-268): even larger than D2PAK [35]
  • Five- and six-terminal packages
    • SOT: small-outline transistor, with more than three terminals

      • SOT-23-5 (SOT-25): 2.9 mm × 1.3/1.75 mm × 1.3 mm body: five terminals [36]
      • SOT-23-6 (SOT-26): 2.9 mm × 1.3/1.75 mm × 1.3 mm body: six terminals [37]
      • SOT-23-8 (SOT-28): 2.9 mm × 1.3/1.75 mm × 1.3 mm body: eight terminals [38]
      • SOT-353 (SC-88A): 2 mm × 1.25 mm × 0.95 mm body: five terminals [39]
      • SOT-363 (SC-88, SC-70-6): 2 mm × 1.25 mm × 0.95 mm body: six terminals [40]
      • SOT-563: 1.6 mm × 1.2 mm × 0.6 mm body: six terminals [41]
      • SOT-665: 1.6 mm × 1.6 mm × 0.55 mm body: six terminals [42]
      • SOT-666: 1.6 mm × 1.6 mm × 0.55 mm body: six terminals [43]
      • SOT-886: 1.5 mm × 1.05 mm × 0.5 mm body: six terminals: leadless
      • SOT-886: 1 mm × 1.45 mm × 0.5 mm body: six terminals: leadless [44]
      • SOT-891: 1.05 mm × 1.05 mm × 0.5 mm body: five terminals: leadless
      • SOT-953: 1 mm × 1 mm × 0.5 mm body: five terminals
      • SOT-963: 1 mm × 1 mm × 0.5 mm body: six terminals
      • SOT-1115: 0.9 mm × 1 mm × 0.35 mm body: six terminals: leadless [45]
      • SOT-1202: 1 mm × 1 mm × 0.35 mm body: six terminals: leadless [46]
  • Packages with more than six terminals[47]

    • Dual-in-line

      • flatpack was one of the earliest surface-mounted packages.
      • SOIC: (Small-Outline Integrated Circuit), dual-in-line, 8 or more pins, gull-wing lead form, pin spacing 1.27 mm
      • SOJ: Small-Outline Package, J-Leaded, the same as SOIC except J-leaded [48]
      • TSOP: Thin Small-Outline Package, thinner than SOIC with smaller pin spacing of 0.5 mm
      • SSOP: Shrink Small-Outline Package, pin spacing of 0.65 mm, sometimes 0.635 mm or in some cases 0.8 mm
      • TSSOP: Thin Shrink Small-Outline package.
      • QSOP: Quarter-Size Small-Outline package, with pin spacing of 0.635 mm
      • VSOP: Very Small Outline Package, even smaller than QSOP; 0.4, 0.5 mm or 0.65 mm pin spacing
      • DFN: Dual Flat No-lead, smaller footprint than leaded equivalent
    • Quad-in-line
      • PLCC: Plastic Leaded Chip Carrier, square, J-lead, pin spacing 1.27 mm
      • QFP: Quad Flat Package, various sizes, with pins on all four sides
      • LQFP: Low-profile Quad Flat Package, 1.4 mm high, varying sized and pins on all four sides
      • PQFP: Plastic Quad Flat-Pack, a square with pins on all four sides, 44 or more pins
      • CQFP: Ceramic Quad Flat-Pack, similar to PQFP
      • MQFP: Metric Quad Flat Pack, a QFP package with metric pin distribution
      • TQFP: Thin Quad Flat Pack, a thinner version of PQFP
      • QFN: Quad Flat No-lead, smaller footprint than leaded equivalent
      • LCC: Leadless Chip Carrier, contacts are recessed vertically to "wick-in" solder. Common in aviation electronics because of robustness to mechanical vibration.
      • MLP (MLF): Micro Leadframe Package (Micro Lead-Frame package) with a 0.5 mm contact pitch, no leads (same as QFN) [49]
      • PQFN: Power Quad Flat No-lead, with exposed die-pad[s] for heatsinking
    • Grid arrays
      • PGA: Pin grid array.
      • BGA: Ball Grid Array, with a square or rectangular array of solder balls on one surface, ball spacing typically 1.27 mm
      • LGA: An array of bare lands only. Similar to in appearance to QFN, but mating is by spring pins within a socket rather than solder.
      • FBGA: Fine pitch Ball Grid Array, with a square or rectangular array of solder balls on one surface
      • LFBGA: Low profile Fine pitch Ball Grid Array, with a square or rectangular array of solder balls on one surface, ball spacing typically 0.8 mm
      • TFBGA: Thin Fine pitch Ball Grid Array, with a square or rectangular array of solder balls on one surface, ball spacing typically 0.5 mm
      • CGA: Column Grid Array, circuit package in which the input and output points are high temperature solder cylinders or columns arranged in a grid pattern.
      • CCGA: Ceramic Column Grid Array, circuit package in which the input and output points are high temperature solder cylinders or columns arranged in a grid pattern. The body of the component is ceramic.
      • μBGA: micro-BGA, with ball spacing less than 1 mm
      • LLP: Lead Less Package, a package with metric pin distribution (0.5 mm pitch).
    • Non-packaged devices (although surface-mount, these devices require specific process for assembly):
      • COB: Chip-On-Board; a bare silicon chip, that is usually an integrated circuit,
        is supplied without a package (usually a lead frame overmolded with epoxy)
        and is attached, often with epoxy, directly to a circuit board.
        The chip is then wire bonded and protected from mechanical
        damage and contamination by an epoxy "glob-top".
      • COF: Chip-On-Flex; a variation of COB, where a chip is mounted directly to a flex circuit.
      • COG: Chip-On-Glass; a variation of COB, where a chip,
        typically a Liquid crystal display (LCD) controller, is mounted directly on glass.

SMT Surface Mount Technology footprint references的更多相关文章

  1. Surface Mount Package Details

    http://www.centralsemi.com/product/packages/index2.php http://www.infineon.com/cms/cn/product/packag ...

  2. [转载]Altium规则详解及设置

    在Altium中进行PCB的设计时,经常会使用规则(Rule)来进行限定以确定线宽孔径等参数,此文将简要的介绍规则中的一些标量代表了什么. Electrical——电气规则.安全间距,线网连接等 Ro ...

  3. PCB优化设计(转载)

    PCB优化设计(一) 2011-04-25 11:55:36|  分类: PCB设计   目 前SMT技术已经非常成熟,并在电子产品上广泛应用,因此,电子产品设计师有必要了解SMT技术的常识和可制造性 ...

  4. Altium Designer 规则设置

    设计规则设置 Designer Rules Check(DRC) Electrical 电气规则.安全间距,线网连接等 Routing 布线,线宽.过孔形状尺寸.布线拓扑.布线层.封装出线等 SMT ...

  5. AD16

    第三集   制作光敏小夜灯的原理图 1.点击G切换栅格的精度 2.元器件放置好之后要先布局在布线 3.布线完成后要检查电路的合理性.对应查一下电阻的个数,位置是不是符合.在原理上大概的估计是否可以. ...

  6. The Enginer sample Test for GD temperature control (FCT, ATE, NPI,SMT, )

    For me it is a day of grief.................... 1 Communication with customer test methods. notes: T ...

  7. RFID 仿真/模拟/监控/拦截/检测/嗅探器

    Sound card based RFID sniffer/emulator (Too tired after recon.cx to do draw the schematics better th ...

  8. RFID Reader 线路图收集

    This 125 kHz RFID reader http://www.serasidis.gr/circuits/RFID_reader/125kHz_RFID_reader.htm http:// ...

  9. USBDM RS08/HCS08/HCS12/Coldfire V1,2,3,4/DSC/Kinetis Debugger and Programmer -- MC9S08JS16

    Introduction The attached files provide a port of a combined TBDML/OSBDM code to a MC9S08JS16 proces ...

随机推荐

  1. 多播知识by 陈胜君

    简单的讲一下多拨的说明:一.多拨分物理多拨和虚拟多拨. 物理多拨是电信老套餐,就是一个宽带支持四个内网设备同时拨号上网,即2004年以前,允许家里四台电脑直接连LAN网口启动拨号,同时允许四拨在线.现 ...

  2. [ python ] 练习作业 - 2

    1.写函数,检查获取传入列表或元组对象的所有奇数位索引对应的元素,并将其作为新列表返回给调用者. lic = [0, 1, 2, 3, 4, 5] def func(l): return l[1::2 ...

  3. C# 下载文件的四种方法

    C# 文件下载四方法 - CSDN论坛 - CSDN.NET using System; using System.Data; using System.Configuration; using Sy ...

  4. CGI、FastCGI和php-fpm的概念和区别

    CGI是HTTP Server和一个独立的进程之间的协议,把HTTP Request的Header设置成进程的环境变量,HTTP Request的正文设置成进程的标准输入,而进程的标准输出就是HTTP ...

  5. Python全栈开发之1、输入输出与流程控制

    Python简介 python是吉多·范罗苏姆发明的一种面向对象的脚本语言,可能有些人不知道面向对象和脚本具体是什么意思,但是对于一个初学者来说,现在并不需要明白.大家都知道,当下全栈工程师的概念很火 ...

  6. SaltStack的配置管理--jinja (七)

    SaltStack的配置管理--jinja 需求场景:使用jinja模板,让各节点的httpd都监听在本机的ip [root@7mini-node1 apache]# vim files/httpd. ...

  7. 双缓冲解决控制台应用程序输出“闪屏”(C/C++,Windows)

    使用 C 语言编写游戏的小伙伴们想必起初都要遇到这样的问题,在不断清屏输出数据的过程中,控制台中的输出内容会不断地闪屏.出现这个问题的原因是程序对数据处理花掉的时间影响到了数据显示,或许你可以使用局部 ...

  8. poj1475 Pushing Boxes(BFS)

    题目链接 http://poj.org/problem?id=1475 题意 推箱子游戏.输入迷宫.箱子的位置.人的位置.目标位置,求人是否能把箱子推到目标位置,若能则输出推的最少的路径,如果有多条步 ...

  9. CodeForces 805C Find Amir

    直觉. 先走$1$走到$n$,然后从$n$走到$2$,然后从$2$走到$n-1$,然后从$n-1$走到$3$.一次花费为$0$,一次花费为$1$. #include <cstdio> #i ...

  10. 洛谷P4171 [JSOI2010] 满汉全席 [2-SAT,Tarjan]

    题目传送门 满汉全席 题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族的料理方式,呈现在數量繁多的菜色之中.由于菜色众多而繁杂,只有极少數博学多闻技艺高超的厨师能够做出满汉 ...