Travel

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2621    Accepted Submission(s): 720

Problem Description
PP loves travel. Her dream is to travel around country A which consists of N cities and M roads connecting them. PP has measured the money each road costs. But she still has one more problem: she doesn't have enough money. So she must work during her travel. She has chosen some cities that she must visit and stay to work. In City_i she can do some work to earn Ci money, but before that she has to pay Di money to get the work license. She can't work in that city if she doesn't get the license but she can go through the city without license. In each chosen city, PP can only earn money and get license once. In other cities, she will not earn or pay money so that you can consider Ci=Di=0. Please help her make a plan to visit all chosen cities and get license in all of them under all rules above.

PP lives in city 1, and she will start her journey from city 1. and end her journey at city 1 too.

 
Input
The first line of input consists of one integer T which means T cases will follow.

Then follows T cases, each of which begins with three integers: the number of cities N (N <= 100) , number of roads M (M <= 5000) and her initiative money Money (Money <= 10^5) .

Then follows M lines. Each contains three integers u, v, w, which means there is a road between city u and city v and the cost is w. u and v are between 1 and N (inclusive), w <= 10^5.

Then follows a integer H (H <= 15) , which is the number of chosen cities.

Then follows H lines. Each contains three integers Num, Ci, Di, which means the i_th chosen city number and Ci, Di described above.(Ci, Di <= 10^5)

 
Output
If PP can visit all chosen cities and get all licenses, output "YES", otherwise output "NO".

 
Sample Input
2
4 5 10
1 2 1
2 3 2
1 3 2
1 4 1
3 4 2
3
1 8 5
2 5 2
3 10 1
2 1 100
1 2 10000
1
2 100000 1
 
Sample Output
YES
NO
 
Source
 
Recommend
liuyiding   |   We have carefully selected several similar problems for you:  
4268 
4269 
4270 
4271 
4272 
 

题意:

一个人要去旅游。给你n个城市和m条道路。其中有h个城市必须在那里打工。打工的话必须办证。办证要花掉d[i]的钱币。但是有c[i]的工资。每条道路都需花费一定的钱币。告诉你他的初始钱币数。问他能否将这h个城市都工作完。

思路:

y由于h的范围比较小。可以状态压缩。考虑经过的情况直接可以用floyd求出两个城市间的最小花费。然后就是典型的TSP了。

详细见代码:

#include<iostream>
#include<string.h>
#include<cstdio>
const int INF=0x3f3f3f3f;
using namespace std;
int dp[105][1<<16];
int dis[105][105];
int C[150],D[150],id[150];
int n,m,h,mon;
void floyd()
{
for (int k=1;k<=n;k++)
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
int main()
{
int t,i,j,u,v,w,lim,ns,s,ans;
scanf("%d",&t);
while (t--)
{
memset(dis,0x3f,sizeof dis);
scanf("%d%d%d",&n,&m,&mon);
for(i=0;i<m;i++)
{
scanf("%d%d%d",&u,&v,&w);
dis[u][v]=dis[v][u]=min(dis[u][v],w);//习惯性的就判重了。据说这题还真有重边
}
for(i=1;i<=n;i++)
dis[i][i]=0;
floyd();
scanf("%d",&h);
for(i=1;i<=h;i++)
scanf("%d%d%d",&id[i],&C[i],&D[i]);//异常2B。开始后面把id[i]和i混为一谈了
memset(dp,0xcf,sizeof dp);
dp[1][0]=mon;
for(i=1;i<=h;i++)
{
v=id[i];
if(dp[1][0]>=D[i]+dis[1][v])
{
ns=1<<(i-1);
dp[v][ns]=dp[1][0]-D[i]-dis[1][v]+C[i];//只有距离才用还原到原标号
}
}
lim=1<<h;
for(s=0;s<lim;s++)
{
for(i=1;i<=h;i++)//开始2B了。套了两个n果断超时了。
{
u=id[i];//其实直接考虑必须工作的城市就行了.因为最后还是会到必须到的城市
if(dp[u][s]<0||!(s&(1<<(i-1))))//保证状态有效
continue;
for(j=1;j<=h;j++)
{
v=id[j];
if(!(s&(1<<(j-1))))
{
ns=s|(1<<(j-1));
if(dp[u][s]>=D[j]+dis[u][v])
dp[v][ns]=max(dp[v][ns],dp[u][s]-D[j]-dis[u][v]+C[j]);
}
}
}
}
ans=-INF;
for(i=1;i<=h;i++)
{
u=id[i];
ans=max(ans,dp[u][lim-1]-dis[u][1]);
}
if(ans>=0)
printf("YES\n");
else
printf("NO\n");
}
return 0;
}

hdu 4284 Travel(壮压DP&TSP&floyd)的更多相关文章

  1. HDU 4284Travel(状压DP)

    HDU 4284    Travel 有N个城市,M条边和H个这个人(PP)必须要去的城市,在每个城市里他都必须要“打工”,打工需要花费Di,可以挣到Ci,每条边有一个花费,现在求PP可不可以从起点1 ...

  2. [Usaco2006 Nov]Corn Fields牧场的安排 壮压DP

    看到第一眼就发觉是壮压DP 然后就三进制枚举子集吧. 这题真是壮压入门好题... 对于dp[i][j] 表示第i行,j状态下前i行的分配方案数. 那么dp[i][j]肯定是从i-1行转过来的 那么由于 ...

  3. POJ 2686 Traveling by Stagecoach 壮压DP

    大意是有一个人从某个城市要到另一个城市(点数<=30) 然后有n个马车票,相邻的两个城市走的话要消耗掉一个马车票. 花费的时间呢,是马车票上有个速率值,用边/速率就是花的时间. 问最后这个人花费 ...

  4. HDU - 4284 Travel(floyd+状压dp)

    Travel PP loves travel. Her dream is to travel around country A which consists of N cities and M roa ...

  5. Hie with the Pie(POJ3311+floyd+状压dp+TSP问题dp解法)

    题目链接:http://poj.org/problem?id=3311 题目: 题意:n个城市,每两个城市间都存在距离,问你恰好经过所有城市一遍,最后回到起点(0)的最短距离. 思路:我们首先用flo ...

  6. POJ3311 Hie with the Pie 【状压dp/TSP问题】

    题目链接:http://poj.org/problem?id=3311 Hie with the Pie Time Limit: 2000MS   Memory Limit: 65536K Total ...

  7. HDU 4336 容斥原理 || 状压DP

    状压DP :F(S)=Sum*F(S)+p(x1)*F(S^(1<<x1))+p(x2)*F(S^(1<<x2))...+1; F(S)表示取状态为S的牌的期望次数,Sum表示 ...

  8. HDU 3001 Travelling ——状压DP

    [题目分析] 赤裸裸的状压DP. 每个点可以经过两次,问经过所有点的最短路径. 然后写了一发四进制(真是好写) 然后就MLE了. 懒得写hash了. 改成三进制,顺利A掉,时间垫底. [代码] #in ...

  9. hdu 4284 Travel(floyd + TSP)

    虽然题中有n<=100个点,但实际上你必须走过的点只有H<=15个.而且经过任意点但不消耗C[i]跟D[i]可以为无限次,所以可以floyd预处理出H个点的最短路,之后剩下的...就成了裸 ...

随机推荐

  1. Dev使用技巧汇总

    C# XtraGrid的行指示器(RowIndicator)行号以及图标设置 参考网址:https://www.cnblogs.com/xuliangxing/p/6775438.html DateE ...

  2. svn删除

    [本地删除.然后提交到服务器]与[服务器删除然后本地更新] svn delete svn://路径(目录或文件的全路径) -m “删除备注信息文本” 推荐如下操作: svn delete 文件名 sv ...

  3. 【Oracle】Oracle改变日志归档模式

    一.确认工作模式:   1.查询V$DATABASE      SQL>select log_mode from v$database;      归档日志:ARCHIVELOG     2.执 ...

  4. 转载----开发运维资产管理系统cmdb一些观点扯淡

    在新公司负责全网的自动化运维平台及给各个业务线提供接口数据.这工作和以前做的很类似,也算是比较顺手的工作,这段时候遇见一些问题,导致开发的前进速度的放慢了,具体有哪些的不完善,我这里就先不摆出了,但是 ...

  5. jvm的happens-before原则

    提到并发,通常首先想到是锁,其实对共享资源的互斥操作是一方面,在Java中还有一方面是内存的可见性和顺序化,了解JMM的同学可能会更清楚些,内存可见性和顺序性同样非常重要,在这里简单提一下JMM模型, ...

  6. popup non topmost

    public class PopupNonTopmost : Popup { public static DependencyProperty TopmostProperty = Window.Top ...

  7. Python实现七牛云视频播放

    这篇文章是使用Python的Web框架Django Rest Framework来提供视频相关的api接口,主要功能包括视频上传.视频转码.视频访问授权.删除视频文件.视频截图功能. 七牛云上的基本概 ...

  8. Linux实战教学笔记34:企业级监控Nagios实践(上)

    一,Nagios监控简介 生活中大家应该对监控已司空见惯了,例如:餐馆门前的监控探头,小区里的视频监控,城市道路告诉监控探头等,这些监控的目的大家都很清楚,无须多说.那么,企业工作中为什么要部署监控系 ...

  9. js使用浏览器的另存为下载文件

    页面上的页面如下: 我需要根据返回的url下载文件: js: //判断浏览器类型 function myBrowser(){ var userAgent = navigator.userAgent; ...

  10. c# ftp 判断目录是否存在和创建文件夹

    工作中项目一直使用的ftp上传日志文件出现了问题,新的服务器搭建好后,日志无法上传.正好来学习一下ftp. 程序中的流程是,一个计时器,每分钟检测配置文件中本地日志文件路径下有没有日志文件,如果有就上 ...