UVa 10766 Organising the Organisation (生成树计数)
题意:给定一个公司的人数,然后还有一个boss,然后再给定一些人,他们不能成为直属上下级关系,问你有多少种安排方式(树)。
析:就是一个生成树计数,由于有些人不能成为上下级关系,也就是说他们之间没有边,没说的就是有边,用Matrix-Tree定理,很容易就能得到答案,注意题目给定的可能有重复的。
对于基尔霍夫矩阵,就是度数矩阵,减去邻接矩阵,一处理就OK了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <bitset>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e16;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 100 + 50;
const int mod = 500500;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r > 0 && r <= n && c > 0 && c <= m;
} LL a[maxn][maxn];
int in[maxn]; LL solve(){
LL ans = 1;
for(int i = 1; i < n; ++i){
for(int j = 1+i; j < n; ++j)
while(a[j][i]){
LL t = a[i][i] / a[j][i];
for(int k = i; k < n; ++k)
a[i][k] -= t * a[j][k];
for(int k = i; k < n; ++k)
swap(a[i][k], a[j][k]);
}
if(a[i][i] == 0) return 0;
ans *= a[i][i];
}
return abs(ans);
} int main(){
int k;
while(scanf("%d %d %d", &n, &m, &k) == 3){
for(int i = 1; i <= n; ++i){
for(int j = i+1; j <= n; ++j)
a[i][j] = a[j][i] = -1;
in[i] = n - 1;
}
for(int i = 0; i < m; ++i){
int u, v;
scanf("%d %d", &u, &v);
if(a[u][v] == -1) --in[v], --in[u];
a[u][v] = a[v][u] = 0;
}
for(int i = 1; i <= n; ++i) a[i][i] = in[i];
LL ans = solve();
printf("%lld\n", ans);
}
return 0;
}
UVa 10766 Organising the Organisation (生成树计数)的更多相关文章
- Uva 10766 Organising the Organisation (Matrix_tree 生成树计数)
题目描述: 一个由n个部门组成的公司现在需要分层,但是由于员工间的一些小小矛盾,使得他们并不愿意做上下级,问在满足他们要求以后有多少种分层的方案数? 解题思路: 生成树计数模板题,建立Kirchhof ...
- UVA10766:Organising the Organisation(生成树计数)
Organising the Organisation 题目链接:https://vjudge.net/problem/UVA-10766 Description: I am the chief of ...
- UVA 10766 Organising the Organisation
https://vjudge.net/problem/UVA-10766 题意: n个员工,除总经理外每个人只能有一个直接上级 有m对人不能成为直接的上下级关系 规定k为总经理 问员工分级方案 无向图 ...
- UVa 10766 Organising the Organisation(矩阵树定理)
https://vjudge.net/problem/UVA-10766 题意: 给出n, m, k.表示n个点,其中m条边不能直接连通,求生成树个数. 思路: 这也算个裸题,把可以连接的边连接起来, ...
- 生成树的计数(基尔霍夫矩阵):UVAoj 10766 Organising the Organisation SPOJ HIGH - Highways
HIGH - Highways In some countries building highways takes a lot of time... Maybe that's because th ...
- kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数
第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...
- 「UVA10766」Organising the Organisation(生成树计数)
BUPT 2017 Summer Training (for 16) #6C 题意 n个点,完全图减去m条边,求生成树个数. 题解 注意可能会给重边. 然后就是生成树计数了. 代码 #include ...
- Organising the Organisation(uva10766)(生成树计数)
Input Output Sample Input 5 5 2 3 1 3 4 4 5 1 4 5 3 4 1 1 1 4 3 0 2 Sample Output 3 8 3 题意: 有一张图上有\( ...
- 【BZOJ1002】【FJOI2007】轮状病毒(生成树计数)
1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1766 Solved: 946[Submit][Status ...
随机推荐
- Joker的自动化之路
系统篇 颜色 黄绿+金色 使用mac系统常用工具(包含svn,vim,crt,redis,php5,网络性能命令) 计算机硬件 linux发展史 cent ...
- scrapy-redis组件
scrapy-redis组件 可以帮你保存任务和过滤url redis 数据库 安装 # 下载 wget http://download.redis.io/releases/redis-3.0.6.t ...
- FBString
folly/FBString.h fbstring is a drop-in replacement for std::string. The main benefit of fbstring is ...
- 如何在OS X 10.9 Mavericks下安装Command Line Tools(命令行工具)
随着OS X 10.9 于 2013年6月10日在旧金山WWDC(world wide developer conference)上发布.是首个不使用猫科动物命名的系统,而转用加利福尼亚的产物. 该系 ...
- django之设置分页
分页 Django提供了一些类实现管理数据分页,这些类位于django/core/paginator.py中 Paginator对象 Paginator(列表,int):返回分页对象,参数为列表数据, ...
- 爬虫的三种解析方式(正则解析, xpath解析, bs4解析)
一 : 正则解析 : 常用正则回顾: 单字符: . : 除换行符以外的所有字符 [] : [aoe] [a-w] 匹配集合中任意一个字符 \d : 数字 [0-9] \D : 非数字 \w : 非数字 ...
- BeginInvoke 方法真的是新开一个线程进行异步调用吗?
转自原文BeginInvoke 方法真的是新开一个线程进行异步调用吗? BeginInvoke 方法真的是新开一个线程进行异步调用吗? 参考以下代码: public delegate void tre ...
- yarn学习
- python 监控windows磁盘空间和备份大小
#!/usr/bin/env python # Version = 3.5.2 # __auth__ = '无名小妖' import os import time import sendmail im ...
- mybatis与springdata的一些简单比较与思考
主题 最近在用mybatis做项目,有一些感触想记录下,主要是mybatis(以及它的一些插件)相比较于Spring data(或者jpa,hibernate等)的优势地方. 感触 我觉得mybati ...