hdu 1098
http://acm.hdu.edu.cn/showproblem.php?pid=1098
假设x=m时,65|f(m),即65|5*m^13+13*m^5+k*a*m
计算f(m+1)=(5*m^13+13*m^5+k*a*m)+65*(m^12+6*m^11+22*m^10+55*m^9+99*m^8+132*m^7+132*m^6+99*m^5+56*m^4+24*m^3+8*m^2+2*m)+(18+k*a)
式子的前两部分显然能被65整除,此时如果65|(18+k*a),那么65|f(m+1)。
同时观察到f(1)=18+k*a,所以如果65|f(1),则65|f(m+1),此时对于所有x>1,65|f(x)均成立
这样问题就转化到是否存在a使得65|(18+k*a),我们从1-64进行枚举,先找到满足条件的a必定是最小的,符合题目要求,均不成立则输出"no"
#include <iostream>
using namespace std ;
int main()
{
int k ;
while(~scanf("%d",&k))
{
int a= ;
for(int i= ;i< ;i++)
{
if((+k*i)%==)
{
a=i ;
break ;
}
}
if(!a)
puts("no") ;
else
printf("%d\n",a) ;
}
return ;
}
hdu 1098的更多相关文章
- HDU 1098 Ignatius's puzzle
http://acm.hdu.edu.cn/showproblem.php?pid=1098 题意 :输入一个K,让你找一个a,使得f(x)=5*x^13+13*x^5+k*a*x这个f(x)%65等 ...
- HDU 1098 Ignatius's puzzle(数学归纳)
以下引用自http://acm.hdu.edu.cn/discuss/problem/post/reply.php?postid=8466&messageid=2&deep=1 题意以 ...
- HDU - 1098 - Ignatius's puzzle - ax+by=c
http://acm.hdu.edu.cn/showproblem.php?pid=1098 其实一开始猜测只要验证x=1的时候就行了,但是不知道怎么证明. 题解表示用数学归纳法,假设f(x)成立,证 ...
- 题解报告:hdu 1098 Ignatius's puzzle
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1098 题目中文是这样的: 伊格内修斯在数学上很差,他遇到了一个难题,所以他别无选择,只能上诉埃迪. 这 ...
- hdu 1098 Lowest Bit 解题报告
题目链接:http://code.hdu.edu.cn/game/entry/problem/show.php?chapterid=1§ionid=2&problemid=22 ...
- HDU 1098 Ignatius's puzzle 费马小定理+扩展欧几里德算法
题目大意: 给定k,找到一个满足的a使任意的x都满足 f(x)=5*x^13+13*x^5+k*a*x 被65整除 推证: f(x) = (5*x^12 + 13 * x^4 + ak) * x 因为 ...
- hdu 1098 Ignatius's puzz
有关数论方面的题要仔细阅读,分析公式. Problem Description Ignatius is poor at math,he falls across a puzzle problem,so ...
- HDU 1098(条件满足 数学)
题意是问是否存在非负整数 a,使得任取非负整数 x,f(x) 能够被 65 整除,其中 f(x) = 5*x^13 + 13*x^5 + k*a*x,如存在,输出 a 的最小值,如不存在,输出 no. ...
- 数学--数论--HDU 1098 Ignatius's puzzle (费马小定理+打表)
Ignatius's puzzle Problem Description Ignatius is poor at math,he falls across a puzzle problem,so h ...
随机推荐
- MongoDB-与Python交互
与python交互 点击查看官方文档 安装python包 进入虚拟环境 sudo pip install pymongo 或源码安装 python setup.py 引入包pymongo import ...
- [BZOJ4756]Promotion Counting
Description The cows have once again tried to form a startup company, failing to remember from past ...
- JAVA基础补漏--泛型通配符
泛型通配符只能用于方法的参数 不能用对象定义 public class Test { public static void main(String[] args) { ArrayList<Str ...
- mybatis的一级缓存和二级缓存(1)
1.mybatis一级缓存,sqlSesion级别的缓存,一级缓存默认一直开启的,sqlSession级别的一个Map,把查询的数据放到一个Map中,以后需要相同的数据,直接从Map中去取 与数据库一 ...
- Spring Cloud实战
Spring Cloud实战(一)-Spring Cloud Config Server https://segmentfault.com/a/1190000006149891 https://seg ...
- Java MongoDB插入
前言 插入是向MongoDB中添加数据的基本方法.对目标集使用insert方法来插入一条文档.这个方法会给文档增加一个”_id”属性(如果原来没有的话),然后保存到数据库中. 1.连接数据库,拿到集合 ...
- tarball安装GnuPG (gpg) 2.2.10
https://www.gnupg.org/download/ mac 方式一:推荐 mac $ brew install gpg pinentry pinentry-mac $ echo " ...
- 6.你以为你真的了解final吗?
1. final的简介 final可以修饰变量,方法和类,用于表示所修饰的内容一旦赋值之后就不会再被改变,比如String类就是一个final类型的类.即使能够知道final具体的使用方法,我想对fi ...
- nyi63——树
#include<bits/stdc++.h> using namespace std; int cnt; struct node { int data; int flag; node * ...
- JAVA经典总结
Java经典实例(第二版) 1. 获取环境变量 Java代码 1. System.getenv("PATH"); 2. System.getenv("JAVA_HOME& ...