1. linux基础和javase基础【包含mysql】

    • 这些是基本功,刚开始也不可能学的很精通,最起码要对linux中的一些基本的命令混个脸熟,后面学习各种框架的时候都会用到,用多了就熟悉了。javase的话建议主要看面向对象,集合,io,多线程,以及jdbc操作即可。
  2. zookeeper

    • zookeeper是很多大数据框架的基础,中文名称是动物园的意思,因为目前的大数据框架的图标很多都是动物的形状,所以zookeeper其实就是可以管理很多大数据框架的。针对这个框架,主要掌握如何搭建单节点和集群,以及掌握如何在zkcli客户端下对zookeeper的节点进行增删改查操作即可。
  3. hadoop

    • 目前企业中一般都是用hadoop2.x的版本了,所以就没有必要再去学hadoop1.x版本了,hadoop2.x主要包含三大块

      • hdfs 前期,主要学习hdfs的一些命令即可,上传,下载,删除,移动,查看等命令...
      • mapreduce 这个需要重点学习下,要理解mr的原理以及代码实现,虽然现在工作中真正写mr的代码次数很少了,但是原理还是要理解的。
      • yarn 前期了解即可,只需要知道yarn是一个资源调度平台,主要负责给任务分配资源即可,yarn不仅可以给mapreduce任务调度资源,还可以为spark任务调度资源...yarn是一个公共的资源调度平台,所有满足条件的框架都可以使用yarn来进行资源调度。
  4. hive

    • hive是一个数据仓库,所有的数据都是存储在hdfs上的,具体【数据仓库和数据库】的区别大家可以去网上搜索一下,有很多介绍。其实如果对mysql的使用比较熟悉的话,使用hive也就简单很多了,使用hive主要是写hql,hql是hive的sql语言,非常类似于mysql数据库的sql,后续学习hive的时候主要理解一些hive的语法特性即可。其实hive在执行hql,底层在执行的时候还是执行的mapredce程序。
    • 注意:其实hive本身是很强大的,数据仓库的设计在工作中也是很重要的,但是前期学习的时候,主要先学会如何使用就好了。后期可以好好研究一下hive。
  5. hbase

    • hbase是一个nosql 数据库,是一个key-value类型的数据库,底层的数据存储在hdfs上。在学习hbase的时候主要掌握 row-key的设计,以及列簇的设计。要注意一个特点就是,hbase基于rowkey查询效率很快,可以达到秒级查询,但是基于列簇中的列进行查询,特别是组合查询的时候,如果数据量很大的话,查询性能会很差。
  6. redis

    • redis也是一个nosql 数据库和key-value类型的数据库,但是这个数据库是纯基于内存的,也就是redis数据库中的数据都是存储在内存中的,所以它的一个特点就是适用于快速读写的应用场景,读写可以达到10W次/秒,但是不适合存储海量数据,毕竟机器的内存是有限的,当然,redis也支持集群,也可以存储大量数据。在学习redis的时候主要掌握string,list,set,sortedset,hashmap这几种数据类型的区别以及使用,还有pipeline管道,这个在批量入库数据的时候是非常有用的,以及transaction事务功能。
  7. flume

    • flume是一个日志采集工具,这个还是比较常用的,最常见的就是采集应用产生的日志文件中的数据。一般有两个流程,一个是flume采集数据存储到kafka中,为了后面使用storm或者sparkstreaming进行实时处理。另一个流程是flume采集的数据落盘到hdfs上,为了后期使用hadoop或者spark进行离线处理。在学习flume的时候其实主要就是学会看flume官网的文档,学习各种组建的配置参数,因为使用flume就是写各种的配置。
  8. kafka

    • kafka 是一个消息队列,在工作中常用于实时处理的场景中,作为一个中间缓冲层,例如,flume->kafka->storm/sparkstreaming。学习kafka主要掌握topic,partition,replicate等的概念和原理。
  9. storm

    • storm是一个实时计算框架,和hadoop的区别就是,hadoop是对离线的海量数据进行处理,而storm是对实时新增的每一条数据进行处理,是一条一条的处理,可以保证数据处理的时效性。学习storm主要学习topology的编写,storm并行度的调整,以及storm如何整合kafka实时消费数据。
  10. spark

    • spark 现在发展的也很不错,也发展成了一个生态圈,spark里面包含很多技术,spark core,spark steaming,spark mlib,spark graphx。
    • spark生态圈里面包含的有离线处理spark core,和实时处理spark streaming,在这里需要注意一下,storm和spark streaming ,两个都是实时处理框架,但是主要区别是:storm是真正的一条一条的处理,而spark streaming 是一批一批的处理。
    • spark中包含很多框架,在刚开始学习的时候主要学习spark core和spark streaming即可。这个一般搞大数据的都会用到。spark mlib和spark graphx 可以等后期工作需要或者有时间了在研究即可。
  11. elasticsearch

    • elasticsearch是一个适合海量数据实时查询的全文搜索引擎,支持分布式集群,其实底层是基于lucene的。在查询的时候支持快速模糊查询,求count,distinct,sum,avg等操作,但是不支持join操作。elasticsearch目前也有一个生态圈,elk(elasticsearch logstash kibana)是一个典型的日志收集,存储,快速查询出图表的一整套解决方案。在学习elasticsearch的时候,前期主要学习如何使用es进行增删改查,es中的index,type,document的概念,以及es中的mapping的设计。

hive 安装 参考 https://www.cnblogs.com/hmy-blog/p/6506417.html

hadoop记录(一)的更多相关文章

  1. hadoop记录-Hadoop参数汇总

    Hadoop参数汇总 linux参数 以下参数最好优化一下: 文件描述符ulimit -n 用户最大进程 nproc (hbase需要 hbse book) 关闭swap分区 设置合理的预读取缓冲区 ...

  2. hadoop记录-hive常见设置

    分区表 set hive.exec.dynamic.partition=true; set hive.exec.dynamic.partition.mode=nonstrict;create tabl ...

  3. Hadoop记录-日常运维操作

    1.Active NameNode hang死,未自动切换 #登录当前hang死 Active namenode主机,停止Namenode,触发自动切换.hadoop-daemon.sh stop n ...

  4. Hadoop记录-hdfs转载

    Hadoop 存档 每个文件均按块存储,每个块的元数据存储在namenode的内存中,因此hadoop存储小文件会非常低效.因为大量的小文件会耗尽namenode中的大部分内存.但注意,存储小文件所需 ...

  5. Hadoop记录-hadoop2.x常用端口及定义方法

    Hadoop集群的各部分一般都会使用到多个端口,有些是daemon之间进行交互之用,有些是用于RPC访问以及HTTP访问.而随着Hadoop周边组件的增多,完全记不住哪个端口对应哪个应用,特收集记录如 ...

  6. Hadoop记录-Hadoop NameNode 高可用 (High Availability) 实现解析

    Hadoop NameNode 高可用 (High Availability) 实现解析   NameNode 高可用整体架构概述 在 Hadoop 1.0 时代,Hadoop 的两大核心组件 HDF ...

  7. Hadoop记录-MRv2(Yarn)运行机制

    1.MRv2结构—Yarn模式运行机制 Client---客户端提交任务 ResourceManager---资源管理 ---Scheduler调度器-资源分配Containers ----在Yarn ...

  8. Hadoop记录-hadoop介绍

    1.hadoop是什么? Hadoop 是Apache基金会下一个开源的大数据分布式计算平台,它以分布式文件系统HDFS和MapReduce算法为核心,为用户提供了系统底层细节透明的分布式基础架构. ...

  9. hadoop记录topk

    lk@lk-virtual-machine:~$ cd hadoop-1.0.1 lk@lk-virtual-machine:~/hadoop-1.0.1$ ./bin dfs -mkdir inpu ...

  10. hadoop记录-如何换namenode机器

    namenode机器磁盘IO负载持续承压,造成NAMENODE切换多次及访问异常. 1 初始化新机器1.1 在新器1.1.1.3部署hadoop软件(直接复制standby1.1.1.2节点)1.2 ...

随机推荐

  1. Python3创建RIDE桌面快捷方式的另一种方法

    今天尝试了一下Python3下安装Robot Framework,但是原来的Python2下创建ride快捷方式的方法都不奏效,启动不了ride.于是,转为VBS脚本的方式来间接创建快捷方式.毕竟,每 ...

  2. hdu 1026:Ignatius and the Princess I(优先队列 + bfs广搜。ps:广搜AC,深搜超时,求助攻!)

    Ignatius and the Princess I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

  3. LoadRunner检查点实战之运行查看器

    一.为什么要使用检查点 为什么要使用检查点,那就要说明一下LR如何判断脚本是否执行成功.LR判断脚本是否执行成功是根据服务器返回的状态来确定的,如果服务器返回的HTTP状态为 200 OK ,那么Vu ...

  4. 对Python线程池

    本文对Python线程池进行详细说明介绍,IDE选择及编码的解决方案进行了一番详细的描述,实为Python初学者必读的Python学习经验心得. AD: 干货来了,不要等!WOT2015 北京站演讲P ...

  5. WPF进阶之接口(3):INotifyPropertyChanged,ICommand

    INotifiPropertyChanged . 作用:向客户端发出某一属性值已更改的通知.该接口包含一个PropertyChanged事件成员(MSDN的解释) INotifyPropertyCha ...

  6. ArcGIS ArcMap 问题(ArcMap闪退、cx_oracle安装不上)

    一.问题描述 1.ArcMap闪退 2.安装32位cx_oracle提示python目录不存在 二.解决方案 1.修改pythoncore的文件目录,指向C:\Python27\ArcGIS10.3\ ...

  7. java 实现对指定目录的文件进行下载

    @RequestMapping("/exportDocument") @ResponseBody public void exportDocument(HttpServletReq ...

  8. Java反序列化漏洞的挖掘、攻击与防御

    一.Java反序列化漏洞的挖掘 1.黑盒流量分析: 在Java反序列化传送的包中,一般有两种传送方式,在TCP报文中,一般二进制流方式传输,在HTTP报文中,则大多以base64传输.因而在流量中有一 ...

  9. Spring Security OAuth2 token权限隔离

    由于项目OAuth2采用了多种模式,授权码模式为第三方系统接入,密码模式用于用户登录,Client模式用于服务间调用, 所有不同的模式下的token需要用  @PreAuthorize("h ...

  10. SaltStack远程执行

    上一篇:SaltStack概述及安装 master也需要安装一个minion 启动salt-master systemctl start salt-master 配置文件在目录/etc/salt下 p ...