机房的人问我树状数组怎么做这题......

树状数组维护$len, num$表示$LIS$的长度和数量即可

复杂度$O(n \log n)$

注:$O(n \log n)$二分+单调栈才是真神仙

具体看代码

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; extern inline char gc() {
static char RR[], *S = RR + , *T = RR + ;
if(S == T) fread(RR, , , stdin), S = RR;
return *S ++;
}
inline int read() {
int p = , w = ; char c = gc();
while(c > '' || c < '') { if(c == '-') w = -; c = gc(); }
while(c >= '' && c <= '') p = p * + c - '', c = gc();
return p * w;
} #define mod 1000000007
#define ri register int
#define sid 50050 int n, cnp, H[sid], a[sid];
struct aha {
int len, num;
} t[sid], f[sid]; void upd(aha &x, aha y) {
if(x.len > y.len) return;
if(x.len < y.len) x = y;
else x.num += y.num, x.num %= mod;
} aha qry(int x) {
aha ret = { , };
for(ri i = x; i; i -= i &(-i)) upd(ret, t[i]);
return ret;
} aha add(int x, aha v) {
for(ri i = x; i <= cnp; i += i & (-i)) upd(t[i], v);
} int main() {
n = read();
for(ri i = ; i <= n; i ++) a[i] = H[i] = read();
sort(H + , H + n + );
cnp = unique(H + , H + n + ) - H - ;
for(ri i = ; i <= n; i ++) a[i] = lower_bound(H + , H + cnp + , a[i]) - H;
for(ri i = ; i <= n; i ++) {
f[i] = qry(a[i] - ); f[i].len ++;
add(a[i], f[i]);
}
aha ans = { , };
for(ri i = ; i <= n; i ++) upd(ans, f[i]);
printf("%d\n", ans.num);
return ;
}

51nod1376 最长上升子序列的数量的更多相关文章

  1. 51nod1376 最长递增子序列的数量

    O(n2)显然超时.网上找的题解都是用奇怪的姿势写看不懂TAT.然后自己YY.要求a[i]之前最大的是多少且最大的有多少个.那么线段树维护两个值,一个是当前区间的最大值一个是当前区间最大值的数量那么我 ...

  2. 【51nod】1376 最长递增子序列的数量

    数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可能有很多个. ...

  3. 51NOD 1376 最长递增子序列的数量 [CDQ分治]

    1376 最长递增子序列的数量 首先可以用线段树优化$DP$做,转移时取$0...a[i]$的最大$f$值 但我要练习$CDQ$ $LIS$是二维偏序问题,偏序关系是$i<j,\ a_i< ...

  4. 51nod 1376 最长递增子序列的数量(线段树)

    51nod 1376 最长递增子序列的数量 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递 ...

  5. 51nod 1376 最长上升子序列的数量 | DP | vector怒刷存在感!

    51nod 1376 最长上升子序列的数量 题解 我们设lis[i]为以位置i结尾的最长上升子序列长度,dp[i]为以位置i结尾的最长上升子序列数量. 显然,dp[i]要从前面的一些位置(设为位置j) ...

  6. 51Nod 1376 最长递增子序列的数量 —— LIS、线段树

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1376 1376 最长递增子序列的数量 基准时间限制:1 秒 空 ...

  7. 51Nod 1376 最长递增子序列的数量 (DP+BIT)

    题意:略. 析:dp[i] 表示以第 i 个数结尾的LIS的长度和数量,状态方程很好转移,先说长度 dp[i] = max { dp[j] + 1 | a[i] > a[j] && ...

  8. 673. Number of Longest Increasing Subsequence最长递增子序列的数量

    [抄题]: Given an unsorted array of integers, find the number of longest increasing subsequence. Exampl ...

  9. 51nod 1376 最长递增子序列的数量(不是dp哦,线段树 +  思维)

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1376 题解:显然这题暴力的方法很容易想到就是以每个数为结尾最 ...

随机推荐

  1. 【BZOJ】2243 [SDOI2011]染色

    [算法]树链剖分+线段树 [题解] 树链剖分算法:http://www.cnblogs.com/onioncyc/p/6207462.html 定义线段树结构体有l,r,lc,rc,sum,data. ...

  2. Django初探(模板渲染、模板语音、simple_tag、母版子版、静态配置文件)

    一.首先我们用PyCharm来创建一个Django项目 终端命令:django-admin startproject sitename 图形创建:   这样一个Django项目就创建完成了,上面可以看 ...

  3. react input 设置默认值

    1.text类型 <input type="text" value={默认值} />  ,这种写法可以显示默认值,但不能对输入框进行编辑 正确写法: <input ...

  4. css3旋转、过渡、动画属性

    1.transform 该属性对元素进行旋转.缩放.移动和倾斜 translate元素从当前位置移动 rotate元素顺时针旋转 scale元素的尺寸增大或减小 skew元素翻转 2.transiti ...

  5. makefile初步制作,arm-linux- (gcc/ld/objcopy/objdump)详解【转】

    转自:http://www.cnblogs.com/lifexy/p/7065175.html 在linux中输入vi Makefile 来实现创建Makefile文件 注意:命令行前必须加TAB键 ...

  6. (转)USB协议简介

    USB协议简介     USB是一种协议总线,即主机与设备之间的通信需要遵循一系列约定.协议内容较多,这里仅作一些简单介绍,深入学习,可参看USB规范(WWW.usb.org).     为了理解协议 ...

  7. c++动态规划dp算法题

    问题1:找硬币,换钱的方法 输入: penny数组代表所有货币的面值,正数不重复 aim小于等于1000,代表要找的钱 输出:换钱的方法总数 解法1:经典dp,空间复杂度O(n*aim) class ...

  8. HTML标签学习之路-001

    1.html的注释 <!--这里是注释内容--> <!--代表注释内容的开始 -->代表注释内容结束 注释部分,不会被浏览器输出,只是作为代码的说明,供开发者查阅 2.HTML ...

  9. javascript你不知道的This

    <你不知道的javascript>这本书读了有好几遍了,似乎每一次读都有新发现,有些内容并不是一下子可以弄懂的,每次读似乎都能明白一些概念.再重读一下this关键字.这个概念非常灵活,也非 ...

  10. [How to] 使用HBase协处理器---基本概念和regionObserver的简单实现

    1. 简介 对于HBase的协处理器概念可由其官方博文了解:https://blogs.apache.org/hbase/entry/coprocessor_introduction 总体来说其包含两 ...