51nod1376 最长上升子序列的数量


机房的人问我树状数组怎么做这题......
树状数组维护$len, num$表示$LIS$的长度和数量即可
复杂度$O(n \log n)$
注:$O(n \log n)$二分+单调栈才是真神仙
具体看代码
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; extern inline char gc() {
static char RR[], *S = RR + , *T = RR + ;
if(S == T) fread(RR, , , stdin), S = RR;
return *S ++;
}
inline int read() {
int p = , w = ; char c = gc();
while(c > '' || c < '') { if(c == '-') w = -; c = gc(); }
while(c >= '' && c <= '') p = p * + c - '', c = gc();
return p * w;
} #define mod 1000000007
#define ri register int
#define sid 50050 int n, cnp, H[sid], a[sid];
struct aha {
int len, num;
} t[sid], f[sid]; void upd(aha &x, aha y) {
if(x.len > y.len) return;
if(x.len < y.len) x = y;
else x.num += y.num, x.num %= mod;
} aha qry(int x) {
aha ret = { , };
for(ri i = x; i; i -= i &(-i)) upd(ret, t[i]);
return ret;
} aha add(int x, aha v) {
for(ri i = x; i <= cnp; i += i & (-i)) upd(t[i], v);
} int main() {
n = read();
for(ri i = ; i <= n; i ++) a[i] = H[i] = read();
sort(H + , H + n + );
cnp = unique(H + , H + n + ) - H - ;
for(ri i = ; i <= n; i ++) a[i] = lower_bound(H + , H + cnp + , a[i]) - H;
for(ri i = ; i <= n; i ++) {
f[i] = qry(a[i] - ); f[i].len ++;
add(a[i], f[i]);
}
aha ans = { , };
for(ri i = ; i <= n; i ++) upd(ans, f[i]);
printf("%d\n", ans.num);
return ;
}
51nod1376 最长上升子序列的数量的更多相关文章
- 51nod1376 最长递增子序列的数量
O(n2)显然超时.网上找的题解都是用奇怪的姿势写看不懂TAT.然后自己YY.要求a[i]之前最大的是多少且最大的有多少个.那么线段树维护两个值,一个是当前区间的最大值一个是当前区间最大值的数量那么我 ...
- 【51nod】1376 最长递增子序列的数量
数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递增子序列(LIS).A的LIS可能有很多个. ...
- 51NOD 1376 最长递增子序列的数量 [CDQ分治]
1376 最长递增子序列的数量 首先可以用线段树优化$DP$做,转移时取$0...a[i]$的最大$f$值 但我要练习$CDQ$ $LIS$是二维偏序问题,偏序关系是$i<j,\ a_i< ...
- 51nod 1376 最长递增子序列的数量(线段树)
51nod 1376 最长递增子序列的数量 数组A包含N个整数(可能包含相同的值).设S为A的子序列且S中的元素是递增的,则S为A的递增子序列.如果S的长度是所有递增子序列中最长的,则称S为A的最长递 ...
- 51nod 1376 最长上升子序列的数量 | DP | vector怒刷存在感!
51nod 1376 最长上升子序列的数量 题解 我们设lis[i]为以位置i结尾的最长上升子序列长度,dp[i]为以位置i结尾的最长上升子序列数量. 显然,dp[i]要从前面的一些位置(设为位置j) ...
- 51Nod 1376 最长递增子序列的数量 —— LIS、线段树
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1376 1376 最长递增子序列的数量 基准时间限制:1 秒 空 ...
- 51Nod 1376 最长递增子序列的数量 (DP+BIT)
题意:略. 析:dp[i] 表示以第 i 个数结尾的LIS的长度和数量,状态方程很好转移,先说长度 dp[i] = max { dp[j] + 1 | a[i] > a[j] && ...
- 673. Number of Longest Increasing Subsequence最长递增子序列的数量
[抄题]: Given an unsorted array of integers, find the number of longest increasing subsequence. Exampl ...
- 51nod 1376 最长递增子序列的数量(不是dp哦,线段树 + 思维)
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1376 题解:显然这题暴力的方法很容易想到就是以每个数为结尾最 ...
随机推荐
- 【Hadoop】大数据时代,我们为什么使用hadoop
博客已转移,请借一步说话.http://www.daniubiji.cn/archives/538 我们先来看看大数据时代, 什么叫大数据,“大”,说的并不仅是数据的“多”!不能用数据到了多少TB , ...
- 【Atcoder】AGC 020 B - Ice Rink Game 递推
[题意]n个人进行游戏,每轮只保留最大的a[i]倍数的人,最后一轮过后剩余2人,求最小和最大的n,或-1.n<=10^5. [算法]递推||二分 [题解]令L(i),R(i)表示第i轮过后的最小 ...
- 阿里iconfont引入方法
原文:iconfont的引入方法 第一步:使用font-face声明字体@font-face {font-family: 'iconfont';src: url('iconfont.eot'); ...
- LintCode之二叉树的最大节点
分治问题,可以把整棵树看做是由一颗颗只有三个节点组成的小树,一颗树的构成是根节点.左子树.右子树,这样只需要从左子树找出一个最大的节点,从右子树找出一个最大的节点,然后与根节点三个取个最大的,就是最终 ...
- 35、def func(a,b=[]) 这种写法有什么坑?
那我们先通过程序看看这个函数有什么坑吧! def func(a,b=[]): b.append(a) print(b) func(1) func(1) func(1) func(1) 看下结果 [1] ...
- Coursera在线学习---第五节.Logistic Regression
一.假设函数与决策边界 二.求解代价函数 这样推导后最后发现,逻辑回归参数更新公式跟线性回归参数更新方式一摸一样. 为什么线性回归采用最小二乘法作为求解代价函数,而逻辑回归却用极大似然估计求解? 解答 ...
- AngularJs 文件上传(实现Multipart/form-data 文件的上传)
<!-- 上传yml文件 --> <div class="blackBoard" ng-show="vm.showUpop==true"> ...
- webgote的例子 数据库与sql注入的相关联系(1)
大家好我是时光凉春衫薄 之前将讲的sql注入有点随便了我同事也觉得有些地方看不懂,往后的几天我尽量写的细一点.尽可能让大家能看懂.(新手出道大佬多多指教.欢迎评论批评.) 数据库与sql注入的相关联系 ...
- WebClient vs HttpClient vs HttpWebRequest
转载:http://www.diogonunes.com/blog/webclient-vs-httpclient-vs-httpwebrequest/ Just when I was startin ...
- react native系列 - 从零开始构建
从零开始构建第一步,当然是从hello world开始,第一课我们没什么代码都不写,只用生成的代码来打包apk.为什么一开始就要学会打包,因为如果连打包都不会,以后做好了也没用.学会了打包,才能让我们 ...