1009: [HNOI2008]GT考试

Time Limit: 1 Sec  Memory Limit: 162 MB

Description

  阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
0

Input

  第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000

Output

  阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.

Sample Input

4 3 100
111

Sample Output

81

HINT

设a[k][j]为k位后面加一个字母转移到j的方案数,于是:

我们发现k后面加一个字母转移到j可以用kmp实现。

这个式子是线性的,可以用矩阵优化。

#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define inf 1000000007
#define ll long long
#define N 22
#define F(i,r) for(i=0;i<r;i++)
struct zz{int q[N][N];}a,b;
int n,m,p;
zz operator*(zz k,zz l)
{
int i,j,o;zz z;
F(i,m) F(j,m) z.q[i][j]=;
F(i,m) F(j,m) F(o,m)
z.q[i][j]=(z.q[i][j]+k.q[i][o]*l.q[o][j])%p;
return z;
}
void ksm(int x)
{
for(int i=;i<m;i++) b.q[i][i]=;
while(x)
{
if(x&) b=b*a;
a=a*a;x>>=;
}
}
char s[N];
int nxt[N],ans;
int main()
{
scanf("%d%d%d%s",&n,&m,&p,s+);
for(int i=,j=;i<=m;i++)
{
while(j&&s[i]!=s[j+]) j=nxt[j];
if(s[j+]==s[i]) j++;
nxt[i]=j;
}
for(int i=;i<m;i++)
{
for(int j=,x;j<;j++)
{
x=i;
while(x&&s[x+]-''!=j) x=nxt[x];
if(j==s[x+]-'') a.q[i][x+]++;
else a.q[i][]++;
}
}
ksm(n);
for(int i=;i<m;i++) ans+=b.q[][i];
printf("%d\n",ans%p);
return ;
}

bzoj 1009: [HNOI2008]GT考试 -- KMP+矩阵的更多相关文章

  1. BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4266  Solved: 2616[Submit][Statu ...

  2. bzoj 1009 [HNOI2008]GT考试——kmp+矩阵优化dp

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 首先想到 确保模式串不出现 就是 确保每个位置的后缀不是该模式串. 为了dp,需要记录 ...

  3. 题解:BZOJ 1009 HNOI2008 GT考试 KMP + 矩阵

    原题描述: 阿申准备报名参加GT考试,准考证号为N位数 X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0<=Ai&a ...

  4. BZOJ 1009 [HNOI2008]GT考试 (KMP+矩阵乘法)

    ---恢复内容开始--- 题目大意:给定一个由数字构成的字符串A(len<=20),让你选择一个长度为n(n是给定的)字符串X,一个合法的字符串X被定义为,字符串X中不存在任何一段子串与A完全相 ...

  5. BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )

    写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...

  6. BZOJ 1009 HNOI2008 GT考试 KMP算法+矩阵乘法

    标题效果:给定的长度m数字字符串s.求不包括子s长度n数字串的数目 n<=10^9 看这个O(n)它与 我们不认为这 令f[i][j]长度i号码的最后的字符串j位和s前者j数字匹配方案 例如,当 ...

  7. BZOJ.1009.[HNOI2008]GT考试(KMP DP 矩阵快速幂)

    题目链接 设f[i][j]为当前是第i位考号.现在匹配到第j位(已有j-1位和A[]匹配)的方案数 因为假如当前匹配j位,如果选择的下一位与A[j+1]不同,那么新的匹配位数是fail[j]而不是0, ...

  8. [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】

    题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...

  9. [bzoj1009](HNOI2008)GT考试 (kmp+矩阵快速幂加速递推)

    Description 阿 申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学 A1A2...Am(0&l ...

随机推荐

  1. JS中短路运算符&&和||

    在JS函数中我们经常会使用到短路运算符,主要是逻辑与(&&) 和 逻辑或(||) 1.逻辑与 && 的运算方式 var a = 5 && 6; cons ...

  2. MM(Majorize-Minimization, Minorize-Maximization)优化方法

    MM算法思想 MM算法是一种迭代优化方法,它利用函数的凸性来找到原函数的最大值或最小值.当原目标函数\(f(\theta)\)较难优化时,算法不直接对原目标函数求最优解,而去求解逼近于原目标函数的一个 ...

  3. Java八种基本类型

    boolean 二进制位: true ,false   byte 二进制位:8 -128 - 127   -2的7次方到2的7次方-1 char 二进制位:16 0 - 65535   short 二 ...

  4. 不相交集ADT--数组实现

    不相交集是解决等价问题的一种有效的数据结构,之所以称之为有效是因为,这个数据结构简单(几行代码,一个简单数组就可以搞定),快速(每个操作基本上可以在常数平均时间内搞定). 首先我们要明白什么叫做等价关 ...

  5. 15个你不得不知道的Chrome dev tools的小技巧

    转载自:https://www.imooc.com/article/2559 谷歌浏览器如今是Web开发者们所使用的最流行的网页浏览器.伴随每六个星期一次的发布周期和不断扩大的强大的开发功能,Chro ...

  6. Machine Learning系列--L0、L1、L2范数

    今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个 ...

  7. Codeforces Round #453 (Div. 1)

    Codeforces Round #453 (Div. 1) A. Hashing Trees 题目描述:给出一棵树的高度和每一层的节点数,问是否有两棵树都满足这个条件,若有,则输出这两棵树,否则输出 ...

  8. 创建一个简单的Maven工程

    Maven的工程结构如下图所示: 大致来看,Maven的工程结构如下: 在创建maven工程时,可以通过骨架创建,也可以不通过骨架创建. 我们先用idea通过骨架创建一个Maven工程. 配置pom. ...

  9. CGIC函数说明

    CGIC函数说明 参考cgic函数说明_Embedded Resources Library Online (C)郝博士 cgiFormResultType cgiFormString( char * ...

  10. POJ 3159 Candies(差分约束+spfa+链式前向星)

    题目链接:http://poj.org/problem?id=3159 题目大意:给n个人派糖果,给出m组数据,每组数据包含A,B,C三个数,意思是A的糖果数比B少的个数不多于C,即B的糖果数 - A ...