bzoj 1009: [HNOI2008]GT考试 -- KMP+矩阵
1009: [HNOI2008]GT考试
Time Limit: 1 Sec Memory Limit: 162 MB
Description
阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字。
他的不吉利数学A1A2...Am(0<=Ai<=9)有M位,不出现是指X1X2...Xn中没有恰好一段等于A1A2...Am. A1和X1可以为
0
Input
第一行输入N,M,K.接下来一行输入M位的数。 N<=10^9,M<=20,K<=1000
Output
阿申想知道不出现不吉利数字的号码有多少种,输出模K取余的结果.
Sample Input
111
Sample Output
HINT
设a[k][j]为k位后面加一个字母转移到j的方案数,于是:

我们发现k后面加一个字母转移到j可以用kmp实现。
这个式子是线性的,可以用矩阵优化。
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define inf 1000000007
#define ll long long
#define N 22
#define F(i,r) for(i=0;i<r;i++)
struct zz{int q[N][N];}a,b;
int n,m,p;
zz operator*(zz k,zz l)
{
int i,j,o;zz z;
F(i,m) F(j,m) z.q[i][j]=;
F(i,m) F(j,m) F(o,m)
z.q[i][j]=(z.q[i][j]+k.q[i][o]*l.q[o][j])%p;
return z;
}
void ksm(int x)
{
for(int i=;i<m;i++) b.q[i][i]=;
while(x)
{
if(x&) b=b*a;
a=a*a;x>>=;
}
}
char s[N];
int nxt[N],ans;
int main()
{
scanf("%d%d%d%s",&n,&m,&p,s+);
for(int i=,j=;i<=m;i++)
{
while(j&&s[i]!=s[j+]) j=nxt[j];
if(s[j+]==s[i]) j++;
nxt[i]=j;
}
for(int i=;i<m;i++)
{
for(int j=,x;j<;j++)
{
x=i;
while(x&&s[x+]-''!=j) x=nxt[x];
if(j==s[x+]-'') a.q[i][x+]++;
else a.q[i][]++;
}
}
ksm(n);
for(int i=;i<m;i++) ans+=b.q[][i];
printf("%d\n",ans%p);
return ;
}
bzoj 1009: [HNOI2008]GT考试 -- KMP+矩阵的更多相关文章
- BZOJ 1009 [HNOI2008]GT考试 (KMP + 矩阵快速幂)
1009: [HNOI2008]GT考试 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4266 Solved: 2616[Submit][Statu ...
- bzoj 1009 [HNOI2008]GT考试——kmp+矩阵优化dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 首先想到 确保模式串不出现 就是 确保每个位置的后缀不是该模式串. 为了dp,需要记录 ...
- 题解:BZOJ 1009 HNOI2008 GT考试 KMP + 矩阵
原题描述: 阿申准备报名参加GT考试,准考证号为N位数 X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学A1A2...Am(0<=Ai&a ...
- BZOJ 1009 [HNOI2008]GT考试 (KMP+矩阵乘法)
---恢复内容开始--- 题目大意:给定一个由数字构成的字符串A(len<=20),让你选择一个长度为n(n是给定的)字符串X,一个合法的字符串X被定义为,字符串X中不存在任何一段子串与A完全相 ...
- BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )
写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...
- BZOJ 1009 HNOI2008 GT考试 KMP算法+矩阵乘法
标题效果:给定的长度m数字字符串s.求不包括子s长度n数字串的数目 n<=10^9 看这个O(n)它与 我们不认为这 令f[i][j]长度i号码的最后的字符串j位和s前者j数字匹配方案 例如,当 ...
- BZOJ.1009.[HNOI2008]GT考试(KMP DP 矩阵快速幂)
题目链接 设f[i][j]为当前是第i位考号.现在匹配到第j位(已有j-1位和A[]匹配)的方案数 因为假如当前匹配j位,如果选择的下一位与A[j+1]不同,那么新的匹配位数是fail[j]而不是0, ...
- [BZOJ 1009] [HNOI2008] GT考试 【AC自动机 + 矩阵乘法优化DP】
题目链接:BZOJ - 1009 题目分析 题目要求求出不包含给定字符串的长度为 n 的字符串的数量. 既然这样,应该就是 KMP + DP ,用 f[i][j] 表示长度为 i ,匹配到模式串第 j ...
- [bzoj1009](HNOI2008)GT考试 (kmp+矩阵快速幂加速递推)
Description 阿 申准备报名参加GT考试,准考证号为N位数X1X2....Xn(0<=Xi<=9),他不希望准考证号上出现不吉利的数字.他的不吉利数学 A1A2...Am(0&l ...
随机推荐
- 【zTree】zTree展开树节点
今天在做zTree树的时候想着将第一级tree展开,于是利用下面方法: /** * 展开树节点的第一层 */ function openFirstTreenode(){ // 获取树对象 var tr ...
- (转)USB的描述符及各种描述符之间的依赖关系
全文链接:http://justmei.blog.163.com/blog/static/11609985320102421659260/?latestBlog 1 推荐 [原创] USB入门系列之七 ...
- cocos2d-x android 添加新场景报错: undefined reference to `vtable for XXX'
转载自 居家懒人 http://www.cnblogs.com/JD85/archive/2012/09/17/2688128.html 加入写了新场景SecondScene,结果在cpp文件里类名地 ...
- css的背景图片background
1.使用背景图片的标签定设置宽高,没有设置的话,也需要用内容来撑开标签. 2.如果对同一个标签分开设置背景图片和颜色,背景颜色一定要写在背景图片后面,不然会被覆盖 <!DOCTYPE html& ...
- PHP扩展插件 imagick 、PDO_MYSQL 安装
环境准备 echo $LC_ALL echo "export LC_ALL=C" >> /etc/profile source /etc/profile yum ins ...
- EnumSet基本用法
enum Season { SPRING, SUMMER, FALL, WINTER } public class EnumSetTest { public static void main(Stri ...
- (转载)使用curl 和 libjson 完成联网和数据解析
转载地址:http://my.oschina.net/cocosgame/blog/71181 libjson 编译和使用 - 3. libjson的C接口 API http://blog.csdn. ...
- 翻译:MLAPP(2.1节 概率概述)
笔者:尝试翻译MLAPP(Machine Learning: a Probabilistic Perspective)一书,供机器学习的学者参考,如有错误理解之处请指出,不胜感激!(如需转载,请联系本 ...
- Python/Anaconda多版本共存的解决方案
博客中的文章均为 meelo 原创,请务必以链接形式注明 本文地址 虽然Python2大势已去,众多项目都已经支持Python3,但总有一些教程和项目只支持Python2.通常情况是计算机里既装着Py ...
- 搭建简单的CGI应用程序
原文来源于<核心编程3>第10章web编程 一.静态文件+脚本文件 1.首先开启cgiweb服务器 python2 -m CGIHTTPServer 8000 看到如下反应 2.服务器目录 ...