2194: 快速傅立叶之二

Time Limit: 10 Sec  Memory Limit: 259 MB

Description

请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5。 a,b中的元素均为小于等于100的非负整数。

Input

第一行一个整数N,接下来N行,第i+2..i+N-1行,每行两个数,依次表示a[i],b[i] (0 < = i < N)。

Output

输出N行,每行一个整数,第i行输出C[i-1]。

Sample Input

5
3 1
2 4
1 1
2 4
1 4

Sample Output

24
12
10
6
1

HINT

 

Source

#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<complex>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define cp complex<double>
#define inf 1000000007
#define ll long long
#define PI acos(-1)
#define N 400010
inline int rd()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
cp a[N],b[N];
int c[N],n,m,L=-,r[N];
void FFT(cp *x,int f)
{
for(int i=;i<n;i++) if(i<r[i]) swap(x[i],x[r[i]]);
for(int i=;i<n;i<<=)
{
cp wn(cos(PI/i),f*sin(PI/i));
for(int j=;j<n;j+=(i<<))
{
cp w(,),X,Y;
for(int k=;k<i;k++,w*=wn)
{
X=x[j+k];Y=w*x[i+j+k];
x[j+k]=X+Y;x[i+j+k]=X-Y;
}
}
}
}
int main()
{
n=rd()-;
for(int i=;i<=n;i++){a[i]=rd();b[n-i]=rd();}
m=n<<;for(n=;n<=m;n<<=) L++;
for(int i=;i<n;i++) r[i]=(r[i>>]>>)|((i&)<<L);
FFT(a,);FFT(b,);
for(int i=;i<n;i++) a[i]*=b[i];
FFT(a,-);
for(int i=m/;i<=m;i++) printf("%d\n",(int)(a[i].real()/n+0.1));
return ;
}

bzoj 2194: 快速傅立叶之二 -- FFT的更多相关文章

  1. bzoj 2194 快速傅立叶之二 —— FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2194 如果把 a 序列翻转,则卷积得到的是 c[n-i],再把得到的 c 序列翻转即可. 代 ...

  2. BZOJ.2194.快速傅立叶之二(FFT 卷积)

    题目链接 \(Descripiton\) 给定\(A[\ ],B[\ ]\),求\[C[k]=\sum_{i=k}^{n-1}A[i]*B[i-k]\ (0\leq k<n)\] \(Solut ...

  3. BZOJ 2194 快速傅立叶之二 ——FFT

    [题目分析] 咦,这不是卷积裸题. 敲敲敲,结果样例也没过. 看看看,卧槽i和k怎么反了. 艹艹艹,把B数组取个反. 靠靠靠,怎么全是零. 算算算,最终的取值范围算错了. 交交交,总算是A掉了. [代 ...

  4. [BZOJ]2194: 快速傅立叶之二

    题目大意:给定序列a,b,求序列c满足c[k]=sigma(a[i]*b[i-k]) (k<=i<n).(n<=10^5) 思路:观察发现就是普通的卷积反一反(翻转ab其中一个后做卷 ...

  5. 【刷题】BZOJ 2194 快速傅立叶之二

    Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...

  6. bzoj 2194: 快速傅立叶之二【NTT】

    看别的blog好像我用了比较麻烦的方法-- (以下的n都--过 \[ c[i]=\sum_{j=i}^{n}a[i]*b[j-i] \] 设j=i+j \[ c[i]=\sum_{j=0}^{n-i} ...

  7. BZOJ 2194 快速傅立叶变换之二 | FFT

    BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...

  8. 【BZOJ 2194】2194: 快速傅立叶之二(FFT)

    2194: 快速傅立叶之二 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1273  Solved: 745 Description 请计算C[k]= ...

  9. 【BZOJ】2194: 快速傅立叶之二

    http://www.lydsy.com/JudgeOnline/problem.php?id=2194 题意:求$c[k]=\sum_{k<=i<n} a[i]b[i-k], n< ...

随机推荐

  1. TypeScript在react项目中的实践

    前段时间有写过一个TypeScript在node项目中的实践. 在里边有解释了为什么要使用TS,以及在Node中的一个项目结构是怎样的. 但是那仅仅是一个纯接口项目,碰巧赶上近期的另一个项目重构也由我 ...

  2. Openflow Plugin学习笔记2

    OpenDaylight OpenFlow Plugin 过载保护 过载保护 OF Plugin中的过载保护按如下流程工作: ConnectionConductor将消息送入队列,是最靠近OFJava ...

  3. Metlnfo CMS全版本漏洞收集

    根据https://www.seebug.org/appdir/MetInfo 进行书写. [版本:Metlnfo 4.0] 漏洞标题:Metlnfo cms任意用户密码修改 漏洞文件:member/ ...

  4. LCD驱动分析【转】

    转自:http://blog.csdn.net/hanmengaidudu/article/details/21559153 1.S3C2440上LCD驱动 (FrameBuffer)实例开发讲解 其 ...

  5. 做Mysql主从时,注意使用replicate_wild_do_table和replicate-wild-ignore-table【转】

    做Mysql主从时,注意使用replicate_wild_do_table和replicate-wild-ignore-table 浓缩版: 使用replicate_do_db和replicate_i ...

  6. UVA 1103 How Many O's?

    题目链接:UVA-11038 题意为给定n和m,求n和m之间(包含)的所有数包含的0的个数. 思路是,用cal(x)表示小于等于x的数包含的0的个数.则答案为cal(n)-cal(m-1). 再把求c ...

  7. 解决su – 后显示-bash-4.1#

    <1>现象 设置tfs的管理用户时. su - admin时,出现 -bash-4.1# <2>解决 chown  admin:admin /home/admin        ...

  8. jQuery常用事件方法详解

    目录 jQuery事件 ready(fn)|$(function(){}) jQuery.on() jQuery.click jQuery.data() jQuery.submit() jQuery事 ...

  9. 设计模式--工厂模式 caffe_layer注册

    来源:http://www.cnblogs.com/zhouqiang/archive/2012/07/20/2601365.html 来源:http://blog.luoyetx.com/2016/ ...

  10. modprobe

    1.1 简介 Linux命令:modprobe .功能说明:自动处理可载入模块.语 法:modprobe [-acdlrtvV][--help][模块文件][符号名称 = 符号值].补充说明:modp ...