[BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)
大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算。
于是问题变成求1~k的所有2333进制数上每一位数的组合数之积。
数位DP,f[i][0/1]表示从高到低第i位,这一位没卡/卡了限制,的组合数之积,转移显然。
WA 8发,都想抽死自己。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=,P=;
int T,tot,tot2,C[N][N],S[N][N],a[N],b[N],f[N][];
ll n,k; int main(){
freopen("bzoj4591.in","r",stdin);
freopen("bzoj4591.out","w",stdout);
C[][]=; rep(i,,P) S[][i]=;
rep(i,,P){
C[i][]=S[i][]=;
rep(j,,P) C[i][j]=(C[i-][j-]+C[i-][j])%P,S[i][j]=(S[i][j-]+C[i][j])%P;
}
for (scanf("%d",&T); T--; ){
scanf("%lld%lld",&n,&k); tot=;
while (n) a[++tot]=n%P,n/=P;
rep(i,,tot) b[i]=k%P,k/=P;
f[tot+][]=; f[tot+][]=;
for (int i=tot; i; i--){
f[i][]=f[i+][]*S[a[i]][P-]%P;
if (b[i]) f[i][]=(f[i][]+f[i+][]*S[a[i]][b[i]-]%P)%P;
f[i][]=f[i+][]*C[a[i]][b[i]]%P;
}
printf("%d\n",(f[][]+f[][])%P);
}
return ;
}
[BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)的更多相关文章
- [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
- Luogu4345 SHOI2015 超能粒子炮·改 Lucas、数位DP
传送门 模数小,还是个质数,Lucas没得跑 考虑Lucas的实质.设\(a = \sum\limits_{i=0}^5 a_i 2333^i\),\(b = \sum\limits_{i=0}^5 ...
- bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]
4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...
- 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理
题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...
- BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理
BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...
- bzoj4591 [Shoi2015]超能粒子炮·改
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
- P4345 [SHOI2015]超能粒子炮·改 Lucas
\(\color{#0066ff}{ 题目描述 }\) 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒 ...
- BZOJ4591——[Shoi2015]超能粒子炮·改
1.题意:求 2.分析:公式恐惧症的同学不要跑啊QAQ 根据lucas定理-- 这一步大家都能懂吧,这是浅而易见的lucas定理转化过程,将每一项拆分成两项 那么下一步,我们将同类项合并 我们观察可以 ...
- BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)
注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...
随机推荐
- Problem 2278 YYS (FZU + java大数)
题目链接:http://acm.fzu.edu.cn/problem.php?pid=2278 题目: 题意: 有n种卡牌,每种卡牌被抽到的概率为1/n,求收齐所有卡牌的天数的期望. 思路: 易推得公 ...
- Oracle笔记之约束
约束用于保证数据库中某些数据的完整性,给某一列添加一个约束可以保证不满足约束的数据是绝对不会被接受的. 约束主要有那么五种类型:非空约束.唯一约束.主键约束.外键约束.校验约束. 使用如下命令检索某个 ...
- ASP.NET EF 使用LinqPad 快速学习Linq
使用LinqPad这个工具可以很快学习并掌握linq[Language Integrated Query] linqPad官方下载地址:http://www.linqpad.net/ linqPad4 ...
- Unity 添加鼠标右键事件
把此类放到 Editor下使用就OK using UnityEngine; using System.Collections; using System.Collections.Generic; us ...
- (1)剑指Offer之斐波那契数列问题和跳台阶问题
一 斐波那契数列 题目描述: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. n<=39 问题分析: 可以肯定的是这一题通过递归的方式是肯定能做出来,但是这样会有 ...
- Linux内核同步原语之原子操作
避免对同一数据的并发访问(通常由中断.对称多处理器.内核抢占等引起)称为同步. ——题记 内核源码:Linux-2.6.38.8.tar.bz2 目标平台:ARM体系结构 原子操作确保对同一数据的“读 ...
- BZOJ 3958 Mummy Madness
Problem BZOJ Solution 算法:二分+扫描线 快要2019年了,就瞎写一篇博客来凑数,不然感觉太荒凉了-- 答案是可二分的,那么二分的依据是什么呢?不妨设当前二分的答案为\(mid\ ...
- linux nginx php-fpm被攻击
1.nginx错误日志:报错 2018/05/30 16:30:55 [error] 8765#0: *1485 connect() to unix:/tmp/php-70-cgi.sock fail ...
- rcnn ->fast rcnn->faster rcnn物体检测论文
faster rcnn中的rpn网络: 特征可以看做一个尺度51*39的256通道图像,对于该图像的每一个位置,考虑9个可能的候选窗口:三种面积{1282,2562,5122}×三种比例{1:1,1: ...
- python【项目】:工资管理(简易版)
功能要求: 登录系统用户认证通过后才能列出下一级菜单员工信息表 登录系统要有用户登录.注册账号.删除账号.修改密码.退出 登录密码要有加密功能 从info.txt文件读取员工及工资信息,最后通过增加, ...