[BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)
大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算。
于是问题变成求1~k的所有2333进制数上每一位数的组合数之积。
数位DP,f[i][0/1]表示从高到低第i位,这一位没卡/卡了限制,的组合数之积,转移显然。
WA 8发,都想抽死自己。
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=,P=;
int T,tot,tot2,C[N][N],S[N][N],a[N],b[N],f[N][];
ll n,k; int main(){
freopen("bzoj4591.in","r",stdin);
freopen("bzoj4591.out","w",stdout);
C[][]=; rep(i,,P) S[][i]=;
rep(i,,P){
C[i][]=S[i][]=;
rep(j,,P) C[i][j]=(C[i-][j-]+C[i-][j])%P,S[i][j]=(S[i][j-]+C[i][j])%P;
}
for (scanf("%d",&T); T--; ){
scanf("%lld%lld",&n,&k); tot=;
while (n) a[++tot]=n%P,n/=P;
rep(i,,tot) b[i]=k%P,k/=P;
f[tot+][]=; f[tot+][]=;
for (int i=tot; i; i--){
f[i][]=f[i+][]*S[a[i]][P-]%P;
if (b[i]) f[i][]=(f[i][]+f[i+][]*S[a[i]][b[i]-]%P)%P;
f[i][]=f[i+][]*C[a[i]][b[i]]%P;
}
printf("%d\n",(f[][]+f[][])%P);
}
return ;
}
[BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)的更多相关文章
- [bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
- Luogu4345 SHOI2015 超能粒子炮·改 Lucas、数位DP
传送门 模数小,还是个质数,Lucas没得跑 考虑Lucas的实质.设\(a = \sum\limits_{i=0}^5 a_i 2333^i\),\(b = \sum\limits_{i=0}^5 ...
- bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]
4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...
- 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理
题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...
- BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理
BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...
- bzoj4591 [Shoi2015]超能粒子炮·改
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
- P4345 [SHOI2015]超能粒子炮·改 Lucas
\(\color{#0066ff}{ 题目描述 }\) 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒 ...
- BZOJ4591——[Shoi2015]超能粒子炮·改
1.题意:求 2.分析:公式恐惧症的同学不要跑啊QAQ 根据lucas定理-- 这一步大家都能懂吧,这是浅而易见的lucas定理转化过程,将每一项拆分成两项 那么下一步,我们将同类项合并 我们观察可以 ...
- BZOJ4591 SHOI2015超能粒子炮·改(卢卡斯定理+数位dp)
注意到模数很小,容易想到使用卢卡斯定理,即变成一个2333进制数各位组合数的乘积.对于k的限制容易想到数位dp.可以预处理一发2333以内的组合数及组合数前缀和,然后设f[i][0/1]为前i位是否卡 ...
随机推荐
- 【LIbreOJ】#6256. 「CodePlus 2017 12 月赛」可做题1
[题意]定义一个n阶正方形矩阵为“巧妙的”当且仅当:任意选择其中n个不同行列的数字之和相同. 给定n*m的矩阵,T次询问以(x,y)为左上角的k阶矩阵是否巧妙.n,m<=500,T<=10 ...
- css3同心圆闪烁扩散效果
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- python初步学习-面向对象之 类(二)
方法重写 如果你的父类方法的功能不能满足你的需求,你可以在子类重写你父类的方法: #!/usr/bin/env python #coding:utf8 class Parent: def myMeth ...
- java线上应用故障排查之二:高内存占用【转】
前一篇介绍了线上应用故障排查之一:高CPU占用,这篇主要分析高内存占用故障的排查. 搞Java开发的,经常会碰到下面两种异常: 1.java.lang.OutOfMemoryError: PermGe ...
- HDU 6195 2017沈阳网络赛 公式
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6195 题意:有M个格子,有K个物品.我们希望在格子与物品之间连数量尽可能少的边,使得——不论是选出M个 ...
- Tutorial 4: Authentication & Permissions
转载自:http://www.django-rest-framework.org/tutorial/4-authentication-and-permissions/ Tutorial 4: Auth ...
- 微信JS-SDK接口 + FLASK实现图片上传
最近在做一个项目从全球各地采集图片,考虑采用微信JS-SDK来简化开发.图片会首先上传到微信的服务器,返回一个id,然后根据这个id去微信服务器获取图片.微信提供可选择的压缩图片功能.图片首先上传到微 ...
- rds 与mysql 进行主从同步
.rds上默认会有server-****,只需要配置从数据库: .从数据库的配置流程: .[mysqld] log-bin = mysql-bin-changelog #要和主库中的名字一样 rela ...
- linux系统kill一些类名称相同的进程
jps | grep "Main" | awk '{print $1}' | xargs kill 将其中的 Main 替换为需要kill的进程名即可.
- 构建基于TCP的应用层通信模型
各层的关系如下图,表述的是两个应用或CS间通信的过程: 通常使用TCP构建应用时,需要考虑传输层的通信协议,以便应用层能够正确识别消息请求.比如,一个请求的内容很长(如传文件),那肯定要分多次发送 ...