POJ - 3585 树上最大流 换根法
题意:给出一棵树,边上有容量限制,求以任一点作为根和源点,叶子作为汇点的最大流的最大值
首先上网络流等于找死
树形DP可以\(O(n)\)求出以某点\(u\)为根的最大流,只需设\(f[u]=\sum min(cap_{u→v},f[v])\),
这是一个自底向上的过程
其中存在\(min\)是因为\(f[v]\)不包含连向\(u\)的边,要保证合法增广,
注意如果\(v\)为叶子则直接加上\(cap_{u→v}\)
此时我们也得知\(f[v]\)是以v为根的子树的最大流
那么换根后显然以\(v\)为整棵树的根时,最大流\(g[v]\)至少包含\(f[v]\),还有指向父亲\(u\)部分的贡献,这部分的贡献有原式可以比较得出为\(min(cap_{u→v},g[u]-min(cap_{u→v},f[v]))\),同理叶子需要特判,且\(f[root]=g[root]\)
这是一个自顶向下的过程
由此只需\(O(n)\)扫两遍就能得出任一点作为源点的最大流
另外由于POJ过于垃圾请交C++
PS.换根对于贡献的处理也可用于数据结构上,比如以任一点为根的前提下的对子树查询
详见https://blog.csdn.net/fsss_7/article/details/51076282
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define rrep(i,j,k) for(int i=j;i>=k;i--)
#define erep(i,u) for(int i=head[u];~i;i=nxt[i])
#define print(a) printf("%lld",(ll)(a))
#define printbk(a) printf("%lld ",(ll)(a))
#define println(a) printf("%lld\n",(ll)(a))
using namespace std;
const int MAXN = 2e5+11;
const int MOD = 1e9+7;
typedef long long ll;
unsigned int xjb=2333333;
int Rand(){
return (xjb=xjb*12345+23333)%MOD+1;
}
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int to[MAXN<<1],nxt[MAXN<<1],cost[MAXN<<1],head[MAXN],tot;
int deg[MAXN];
void add(int u,int v,int w){
to[tot]=v;
cost[tot]=w;
nxt[tot]=head[u];
head[u]=tot++;
}
void init(){
memset(head,-1,sizeof head);
tot=0;
}
ll f[MAXN],g[MAXN],n;
void DP(int u,int fa){
f[u]=0;
for(int i=head[u];~i;i=nxt[i]){
int v=to[i];
ll w=cost[i];
if(v==fa) continue;
DP(v,u);
if(deg[v]==1) f[u]+=w;
else f[u]+=min(w,f[v]);
}
}
void dfs(int u,int fa){
for(int i=head[u];~i;i=nxt[i]){
int v=to[i];
ll w=cost[i];
if(v==fa) continue;
g[v]=f[v];
if(deg[u]==1) g[v]+=w;
else g[v]+=min(w,g[u]-min(w,f[v]));
dfs(v,u);
}
}
int main(){
int T=0; cin>>T;
while(T--){
init();
memset(deg,0,sizeof deg);
n=read();
rep(i,1,n-1){
int u=read();
int v=read();
int w=read();
add(u,v,w);
add(v,u,w);
deg[u]++;
deg[v]++;
}
DP(1,0);g[1]=f[1];
dfs(1,0);
ll ans=0;
rep(i,1,n) ans=max(ans,g[i]);
println(ans);
}
return 0;
}
POJ - 3585 树上最大流 换根法的更多相关文章
- poj3585树最大流——换根法
题目:http://poj.org/problem?id=3585 二次扫描与换根法,一次dfs求出以某个节点为根的相关值,再dfs遍历一遍树,根据之前的值换根取最大值为答案. 代码如下: #incl ...
- POJ 3585 Accumulation Degree【换根DP】
传送门:http://poj.org/problem?id=3585 题意:给定一张无根图,给定每条边的容量,随便取一点使得从这个点出发作为源点,发出的流量最大,并且输出这个最大的流量. 思路:最近开 ...
- poj 3585 Accumulation Degree(二次扫描和换根法)
Accumulation Degree 大致题意:有一棵流量树,它的每一条边都有一个正流量,树上所有度数为一的节点都是出口,相应的树上每一个节点都有一个权值,它表示从这个节点向其他出口可以输送的最大总 ...
- 题解 poj3585 Accumulation Degree (树形dp)(二次扫描和换根法)
写一篇题解,以纪念调了一个小时的经历(就是因为边的数组没有乘2 phhhh QAQ) 题目 题目大意:找一个点使得从这个点出发作为源点,流出的流量最大,输出这个最大的流量. 以这道题来介绍二次扫描和换 ...
- cf219d 基础换根法
/*树形dp换根法*/ #include<bits/stdc++.h> using namespace std; #define maxn 200005 ]; int root,n,s,t ...
- poj - 3585(二次扫描与换根法)
周末牛客挂了个更难的,这个简单一些 #include<iostream> #include<cstring> #include<cstdio> #include&l ...
- 【51Nod1405】树上距离和 二次扫描与换根法
题目大意:给定一棵 N 个点的边权均为 1 的树,依次输出每个点到其他各个点的距离和. 题解:首先任意选定一个节点为根节点,比如 1,第一遍 dfs 遍历树求出子树大小.树上前缀和.第二遍 dfs 遍 ...
- POJ3585 Accumulation Degree(二次扫描与换根法)
题目:http://poj.org/problem?id=3585 很容易想出暴力.那么就先扫一遍. 然后得到了指定一个根后每个点的子树值. 怎么转化利用一下呢?要是能找出当前点的父亲的 “ 不含当前 ...
- $Poj3585\ Accumulation Degree$ 树形$DP/$二次扫描与换根法
Poj Description 有一个树形的水系,由n-1条河道与n个交叉点组成.每条河道有一个容量,联结x与y的河道容量记为c(x,y),河道的单位时间水量不能超过它的容量.有一个结点是整个水系的发 ...
随机推荐
- turntable
1.业务流程 2.80001代码逻辑 3.80002代码逻辑 4抽奖概率计算
- NHibernate获取实体配置信息(表名,列名等等)
// 注意这里有个&符号,并不是写错了,而是约定 就是这样写的ctx.GetObject("&SessionFactory") 这是官网地址http://nhfor ...
- STM32F4通用定时器
1.基本原理 三种定时器区别 通用定时器功能特点描述 在这里只用输入捕获事件也能获取脉冲个数同时可以只使用它来获取脉冲宽度,比如当捕获到上升沿,马上进入中断,把计数器的值置零,然后等待捕获下降沿的到来 ...
- java中super的用法
在Java中,super关键字有2个用法,一个是访问父类的函数,一个是访问父类的变量,总体来说,就是一个功能,访问父类的成员. 代码如下: class Person { String name ; i ...
- 用word2013发布csdn博客
目前大部分的博客作者在用Word写博客这件事情上都会遇到以下3个痛点: 1.所有博客平台关闭了文档发布接口,用户无法使用Word,Windows Live Writer等工具来发布博客.使用Word写 ...
- 新浪微博Android开发获取Access_token的步骤
最近学习Android的开发,学完书本之后,决定研究如何开发一个微博客户端来实践.第一步当然是用户授权.但是新浪开放平台的说明实在写得不太清楚,用GOOGLE+研读的方法,总算是实验成功了. 这里有别 ...
- [leetcode] 3. Pascal's Triangle
第三道还是帕斯卡三角,这个是要求正常输出,题目如下: Given numRows, generate the first numRows of Pascal's triangle. For examp ...
- C语言C++编程学习:排序原理分析
C语言是面向过程的,而C++是面向对象的 C和C++的区别: C是一个结构化语言,它的重点在于算法和数据结构.C程序的设计首要考虑的是如何通过一个过程,对输入(或环境条件)进行运算处理得到输出(或实现 ...
- C#连接MySql数据库代码
之前学JAVA的时候,老师讲数据库的时候,讲到可以用一个类来连接数据库,叫做Dao层,今天要用C#做上位机,也有一些数据要写到数据库中去,我就想,能不能也给C#写一个这样的Dao层来连接数据库,我就去 ...
- System Workbench for STM32(based on Eclipse)开发环境配置
导入现有项目 不能有同名项目,即使不是同一目录 编译 根目录的Debug目录是编译时自动生成的.另外如果项目使用了git,那么编译时会自动在根目录生成一个.gitignore文件,把Debug目录排除 ...