非常好的题!和spoj 的 Mobile Service有点相似,用记忆化搜索很容易解决

看了网上的题解,也是减掉一维,刚好可以开下数组 https://blog.lucien.ink/archives/224/

#include<bits/stdc++.h>
using namespace std;
#define maxn 2005
int n,A[maxn],B[maxn];
int dp[maxn][][][][]; //状态:准备去拉第i个人,当前在cur楼,另外三个人的目标楼层是abc
int dfs(int i,int cur,int a,int b,int c){
if(dp[i][cur][a][b][c]!=-)
return dp[i][cur][a][b][c];
int res=0x3f3f3f3f;
if(i>n){//终止状态,只要把abc送到终点即可
if(!a && !b && !c)res=;
if(a!=)res=min(res,dfs(i,a,,b,c)+abs(cur-a)+);//送到a
if(b!=)res=min(res,dfs(i,b,a,,c)+abs(cur-b)+);//送到b
if(c!=)res=min(res,dfs(i,c,a,b,)+abs(cur-c)+);//送到c
return dp[i][cur][a][b][c]=res;
}
//先放下abc的决策
if(a)res=min(res,dfs(i,a,,b,c)+abs(cur-a)+);
if(b)res=min(res,dfs(i,b,a,,c)+abs(cur-b)+);
if(c)res=min(res,dfs(i,c,a,b,)+abs(cur-c)+); //准备去拉一个人的决策:先去把i接上电梯
if(a&&b&&c){//电梯全满,再拉一个人需要先放下一个人
res=min(res,dfs(i+,B[i],a,b,c)+abs(cur-A[i])+abs(A[i]-B[i])+);
res=min(res,dfs(i+,a,B[i],b,c)+abs(cur-A[i])+abs(A[i]-a)+);
res=min(res,dfs(i+,b,a,B[i],c)+abs(cur-A[i])+abs(A[i]-b)+);
res=min(res,dfs(i+,c,a,b,B[i])+abs(cur-A[i])+abs(A[i]-c)+);
}
else {//先去接i,再拉一个人
if(!a)res=min(res,dfs(i+,A[i],B[i],b,c)+abs(cur-A[i])+);
else if(!b)res=min(res,dfs(i+,A[i],a,B[i],c)+abs(cur-A[i])+);
else if(!c)res=min(res,dfs(i+,A[i],a,b,B[i])+abs(cur-A[i])+);
}
return dp[i][cur][a][b][c]=res;
} int main(){
memset(dp,-,sizeof dp);
cin>>n;
for(int i=;i<=n;i++)cin>>A[i]>>B[i];
cout<<dfs(,,,,)<<'\n';
}

此外是滚动数组的版本(没有降维复杂度比较高)

#include<bits/stdc++.h>
using namespace std;
#define maxn 2005 int n,a[maxn],b[maxn],dp[][][][][][]; void calc(int &a,int b){
int tmp=min(a,b);
a=tmp;
} int main(){
cin>>n;
for(int i=;i<=n;i++)cin>>a[i]>>b[i];
memset(dp,0x3f,sizeof dp); int cur=;
dp[cur][][][][][]=*n;//开始停在1楼,因为n个人总共上下2*n次,所以直接加上这个值
for(int i=;i<=n;i++){//去接第i+1个人
for(int x=;x>=;x--)//这里必须逆序,因为把电梯里的人放下时的目标状态是dp[cur][][0][0][0][0],即消除掉后效性
for(int y=;y>=;y--)
for(int z=;z>=;z--)
for(int w=;w>=;w--)
for(int f=;f<=;f++){
int now=dp[cur][f][x][y][z][w];
if(now==0x3f3f3f3f)continue;
if(x== && i<n)//把第i+1个人放在位置x,更新状态到下一步
calc(dp[cur^][a[i+]][b[i+]][y][z][w],now+abs(f-a[i+]));
else if(x)//不接人把电梯里的人送到目的地
calc(dp[cur][x][][y][z][w],now+abs(f-x));
if(y== && i<n)
calc(dp[cur^][a[i+]][x][b[i+]][z][w],now+abs(f-a[i+]));
else if(y)
calc(dp[cur][y][x][][z][w],now+abs(f-y));
if(z== && i<n)
calc(dp[cur^][a[i+]][x][y][b[i+]][w],now+abs(f-a[i+]));
else if(z)
calc(dp[cur][z][x][y][][w],now+abs(f-z));
if(w== && i<n)
calc(dp[cur^][a[i+]][x][y][z][b[i+]],now+abs(f-a[i+]));
else if(w)
calc(dp[cur][w][x][y][z][],now+abs(f-w));
}
if(i<n){
memset(dp[cur],0x3f,sizeof dp[cur]);
cur^=;
}
}
int ans=0x3f3f3f3f;
for(int i=;i<=;i++)
ans=min(ans,dp[cur][i][][][][]);
cout<<ans<<'\n';
}

线性dp(记忆化搜索)——cf953C(经典好题dag和dp结合)的更多相关文章

  1. 【bzoj5123】[Lydsy12月赛]线段树的匹配 树形dp+记忆化搜索

    题目描述 求一棵 $[1,n]$ 的线段树的最大匹配数目与方案数. $n\le 10^{18}$ 题解 树形dp+记忆化搜索 设 $f[l][r]$ 表示根节点为 $[l,r]$ 的线段树,匹配选择根 ...

  2. 【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索

    [题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先 ...

  3. [题解](树形dp/记忆化搜索)luogu_P1040_加分二叉树

    树形dp/记忆化搜索 首先可以看出树形dp,因为第一个问题并不需要知道子树的样子, 然而第二个输出前序遍历,必须知道每个子树的根节点,需要在树形dp过程中记录,递归输出 那么如何求最大加分树——根据中 ...

  4. poj1664 dp记忆化搜索

    http://poj.org/problem?id=1664 Description 把M个相同的苹果放在N个相同的盘子里,同意有的盘子空着不放,问共同拥有多少种不同的分法?(用K表示)5.1.1和1 ...

  5. 状压DP+记忆化搜索 UVA 1252 Twenty Questions

    题目传送门 /* 题意:给出一系列的01字符串,问最少要问几个问题(列)能把它们区分出来 状态DP+记忆化搜索:dp[s1][s2]表示问题集合为s1.答案对错集合为s2时,还要问几次才能区分出来 若 ...

  6. ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. Poor Ramzi -dp+记忆化搜索

    ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. ...

  7. POJ 1088 DP=记忆化搜索

    话说DP=记忆化搜索这句话真不是虚的. 面对这道题目,题意很简单,但是DP的时候,方向分为四个,这个时候用递推就好难写了,你很难得到当前状态的前一个真实状态,这个时候记忆化搜索就派上用场啦! 通过对四 ...

  8. zoj 3644(dp + 记忆化搜索)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4834 思路:dp[i][j]表示当前节点在i,分数为j的路径条数,从 ...

  9. loj 1044(dp+记忆化搜索)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=26764 思路:dp[pos]表示0-pos这段字符串最少分割的回文 ...

随机推荐

  1. Dubbox服务的提供方配置

    在src/main/resources下创建applicationContext-service.xml ,内容如下: <?xml version="1.0" encodin ...

  2. SQL优化(三)—— 索引、explain分析

    SQL优化(三)—— 索引.explain分析   一.什么是索引 索引是一种排好序的快速查找的数据结构,它帮助数据库高效的查询数据 在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据 ...

  3. SQL 查询子句

    SQL WHERE Clause(查询子句) WHERE 子句用于过滤记录. SQL WHERE 子句 WHERE子句用于提取满足指定标准的记录. SQL WHERE 语法 SELECT column ...

  4. go导入包

    go导入包 go有很多内置的函数,例如println,不需要引用即可使用.但是如果不借助go的标准库或者第三方库,我们能做的事情有限.在go中,使用关键字import在代码中导入一个包并使用. 修改我 ...

  5. bzoj1066题解

    [解题思路] 考虑拆点,把每根石柱拆成两个点,具体可以理解为石柱底部和石柱顶部,能爬到石柱顶部的蜥蜴只有有限只,而且蜥蜴只有爬到了石柱顶部才能跳到其他石柱的底部. 这样,考虑如下建图: 将每个有蜥蜴的 ...

  6. Shell基础(四):字符串截取及切割、字符串初值的处理、基使用Shell数组、expect预期交互、使用正则表达式

    一.字符串截取及切割 目标: 使用Shell完成各种Linux运维任务时,一旦涉及到判断.条件测试等相关操作时,往往需要对相关的命令输出进行过滤,提取出符合要求的字符串. 本案例要求熟悉字符串的常见处 ...

  7. WebBug靶场基础篇 — 02

    本篇以第一人称记录这个关卡的第 1-5 关. 由于我记录的过程有点偏向于思考,所以截图截的多 = =!所以文章有点长... 下午一觉醒来,已经 4 点多了,然后开电脑,在虚拟机里,铺了铺靶场,但是毕竟 ...

  8. sublime text3 nodejs控制台输出结果中文乱码

    在sublime text3安装完nodejs的插件后,运行console.log("你好"),发现控制台出现中文乱码,解决办法:Preferences-> Browser ...

  9. php开发面试题---2、php常用面试题二(表单提交方式中的get和post有什么区别)

    php开发面试题---2.php常用面试题二(表单提交方式中的get和post有什么区别) 一.总结 一句话总结: 数据位置:get参数在url里面,post在主体里面 数据大小:get几kb,pos ...

  10. 网络错误修复工具:Network Fault Repair Tool Build20160414

    ::请勿轻易修改此文件,以避免不可预知的错误 gwsbhqt@163.com @echo off color 0A setlocal enabledelayedexpansion title Netw ...