线性dp(记忆化搜索)——cf953C(经典好题dag和dp结合)
非常好的题!和spoj 的 Mobile Service有点相似,用记忆化搜索很容易解决
看了网上的题解,也是减掉一维,刚好可以开下数组 https://blog.lucien.ink/archives/224/
#include<bits/stdc++.h>
using namespace std;
#define maxn 2005
int n,A[maxn],B[maxn];
int dp[maxn][][][][]; //状态:准备去拉第i个人,当前在cur楼,另外三个人的目标楼层是abc
int dfs(int i,int cur,int a,int b,int c){
if(dp[i][cur][a][b][c]!=-)
return dp[i][cur][a][b][c];
int res=0x3f3f3f3f;
if(i>n){//终止状态,只要把abc送到终点即可
if(!a && !b && !c)res=;
if(a!=)res=min(res,dfs(i,a,,b,c)+abs(cur-a)+);//送到a
if(b!=)res=min(res,dfs(i,b,a,,c)+abs(cur-b)+);//送到b
if(c!=)res=min(res,dfs(i,c,a,b,)+abs(cur-c)+);//送到c
return dp[i][cur][a][b][c]=res;
}
//先放下abc的决策
if(a)res=min(res,dfs(i,a,,b,c)+abs(cur-a)+);
if(b)res=min(res,dfs(i,b,a,,c)+abs(cur-b)+);
if(c)res=min(res,dfs(i,c,a,b,)+abs(cur-c)+); //准备去拉一个人的决策:先去把i接上电梯
if(a&&b&&c){//电梯全满,再拉一个人需要先放下一个人
res=min(res,dfs(i+,B[i],a,b,c)+abs(cur-A[i])+abs(A[i]-B[i])+);
res=min(res,dfs(i+,a,B[i],b,c)+abs(cur-A[i])+abs(A[i]-a)+);
res=min(res,dfs(i+,b,a,B[i],c)+abs(cur-A[i])+abs(A[i]-b)+);
res=min(res,dfs(i+,c,a,b,B[i])+abs(cur-A[i])+abs(A[i]-c)+);
}
else {//先去接i,再拉一个人
if(!a)res=min(res,dfs(i+,A[i],B[i],b,c)+abs(cur-A[i])+);
else if(!b)res=min(res,dfs(i+,A[i],a,B[i],c)+abs(cur-A[i])+);
else if(!c)res=min(res,dfs(i+,A[i],a,b,B[i])+abs(cur-A[i])+);
}
return dp[i][cur][a][b][c]=res;
} int main(){
memset(dp,-,sizeof dp);
cin>>n;
for(int i=;i<=n;i++)cin>>A[i]>>B[i];
cout<<dfs(,,,,)<<'\n';
}
此外是滚动数组的版本(没有降维复杂度比较高)
#include<bits/stdc++.h>
using namespace std;
#define maxn 2005 int n,a[maxn],b[maxn],dp[][][][][][]; void calc(int &a,int b){
int tmp=min(a,b);
a=tmp;
} int main(){
cin>>n;
for(int i=;i<=n;i++)cin>>a[i]>>b[i];
memset(dp,0x3f,sizeof dp); int cur=;
dp[cur][][][][][]=*n;//开始停在1楼,因为n个人总共上下2*n次,所以直接加上这个值
for(int i=;i<=n;i++){//去接第i+1个人
for(int x=;x>=;x--)//这里必须逆序,因为把电梯里的人放下时的目标状态是dp[cur][][0][0][0][0],即消除掉后效性
for(int y=;y>=;y--)
for(int z=;z>=;z--)
for(int w=;w>=;w--)
for(int f=;f<=;f++){
int now=dp[cur][f][x][y][z][w];
if(now==0x3f3f3f3f)continue;
if(x== && i<n)//把第i+1个人放在位置x,更新状态到下一步
calc(dp[cur^][a[i+]][b[i+]][y][z][w],now+abs(f-a[i+]));
else if(x)//不接人把电梯里的人送到目的地
calc(dp[cur][x][][y][z][w],now+abs(f-x));
if(y== && i<n)
calc(dp[cur^][a[i+]][x][b[i+]][z][w],now+abs(f-a[i+]));
else if(y)
calc(dp[cur][y][x][][z][w],now+abs(f-y));
if(z== && i<n)
calc(dp[cur^][a[i+]][x][y][b[i+]][w],now+abs(f-a[i+]));
else if(z)
calc(dp[cur][z][x][y][][w],now+abs(f-z));
if(w== && i<n)
calc(dp[cur^][a[i+]][x][y][z][b[i+]],now+abs(f-a[i+]));
else if(w)
calc(dp[cur][w][x][y][z][],now+abs(f-w));
}
if(i<n){
memset(dp[cur],0x3f,sizeof dp[cur]);
cur^=;
}
}
int ans=0x3f3f3f3f;
for(int i=;i<=;i++)
ans=min(ans,dp[cur][i][][][][]);
cout<<ans<<'\n';
}
线性dp(记忆化搜索)——cf953C(经典好题dag和dp结合)的更多相关文章
- 【bzoj5123】[Lydsy12月赛]线段树的匹配 树形dp+记忆化搜索
题目描述 求一棵 $[1,n]$ 的线段树的最大匹配数目与方案数. $n\le 10^{18}$ 题解 树形dp+记忆化搜索 设 $f[l][r]$ 表示根节点为 $[l,r]$ 的线段树,匹配选择根 ...
- 【BZOJ】1415 [Noi2005]聪聪和可可 期望DP+记忆化搜索
[题意]给定无向图,聪聪和可可各自位于一点,可可每单位时间随机向周围走一步或停留,聪聪每单位时间追两步(先走),问追到可可的期望时间.n<=1000. [算法]期望DP+记忆化搜索 [题解]首先 ...
- [题解](树形dp/记忆化搜索)luogu_P1040_加分二叉树
树形dp/记忆化搜索 首先可以看出树形dp,因为第一个问题并不需要知道子树的样子, 然而第二个输出前序遍历,必须知道每个子树的根节点,需要在树形dp过程中记录,递归输出 那么如何求最大加分树——根据中 ...
- poj1664 dp记忆化搜索
http://poj.org/problem?id=1664 Description 把M个相同的苹果放在N个相同的盘子里,同意有的盘子空着不放,问共同拥有多少种不同的分法?(用K表示)5.1.1和1 ...
- 状压DP+记忆化搜索 UVA 1252 Twenty Questions
题目传送门 /* 题意:给出一系列的01字符串,问最少要问几个问题(列)能把它们区分出来 状态DP+记忆化搜索:dp[s1][s2]表示问题集合为s1.答案对错集合为s2时,还要问几次才能区分出来 若 ...
- ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. Poor Ramzi -dp+记忆化搜索
ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2017)- K. ...
- POJ 1088 DP=记忆化搜索
话说DP=记忆化搜索这句话真不是虚的. 面对这道题目,题意很简单,但是DP的时候,方向分为四个,这个时候用递推就好难写了,你很难得到当前状态的前一个真实状态,这个时候记忆化搜索就派上用场啦! 通过对四 ...
- zoj 3644(dp + 记忆化搜索)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4834 思路:dp[i][j]表示当前节点在i,分数为j的路径条数,从 ...
- loj 1044(dp+记忆化搜索)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=26764 思路:dp[pos]表示0-pos这段字符串最少分割的回文 ...
随机推荐
- Linux 操作系统介绍
应用软件——操作系统——硬件 操作系统的作用 是现代计算机系统中最基本和最重要的系统软件 是配置在计算机硬件上的第一层软件,是对硬件系统的首次扩展 主要作用是管理好硬件设备,并为用户和应用程序提供一个 ...
- Java的安全性如何理解
Java取消了强大但又危险的指针,而代之以引用.由于指针可进行移动运算,指针可随便指向一个内存区域,而不管这个区域是否可用,这样做是危险的,因为原来这个内存地址可能存储着重要数据或者是其他程序运行所占 ...
- ajax请求的原生js实现
我们使用ajax请求一般都用的jQuery, axios封装好了的api, 那么如果只能用原生js, 我们该如何操作了? 上代码. 我们在同目录下写好一个json文件(data.json)用于请求测试 ...
- JMeter 服务器监控插件环境配置
1.工具准备: jmeter下载地址:(尽量下载老版本如apache-jmeter-2.11,其他的版本比较高,可能和jmeter-plugins不兼容) http://jmeter.apache.o ...
- Ubuntu 图形桌面死机重启(机器不重启)
Ubuntu的图形界面容易死机,如果正在跑程序的话又不能重启.这时候可以通过终端来_重启_图形界面. 首先按Alt+Ctrl+F1进入终端界面.查看图形界面的进程: ps -t tty7 查看到名为X ...
- 调试Android有什么错误
项目目录的cmd调试查看有什么错误 gradlew processDebugManifest --stacktrace
- php手册的一些思考
函数手册一定要认真看,很多用法都不太清楚: array array_merge ( array $array1 [, array $... ] ) array_merge() 将一个或多个数组的单 ...
- vue基础二
1.vue实例 每个 Vue.js 应用都是通过构造函数 Vue 创建一个 Vue 的根实例 启动的.在实例化 Vue 时,需要传入一个选项对象,它可以包含数据.模板.挂载元素.方法.生命周期钩子等选 ...
- 最长上升子序列(LIS)问题
最长上升子序列(LIS)问题 此处我们只讨论严格单调递增的子序列求法. 前面O(n2)的算法我们省略掉,直接进入O(nlgn)算法. 方法一:dp + 树状数组 定义dp[i]:末尾数字是i时最长上升 ...
- Unity5.2.1上Android真机调试环境配置
下载SDK,JDK安装,配置JAVA环境 1.下载SDK,下载adt-bundle-windows-x86_64-20131030.zip,下载地址:http://pan.baidu.com/shar ...