传送门:


http://codeforces.com/problemset/problem/398/E

题解:


首先答案不超过2。

最长环=1时,ans=0

最长环=2时,ans=1

否则,ans=2

考虑有长度大于2的环时如何两步出解。

那么第一步肯定是把大环拆成若干长度不超过2的环。

不妨确定一个x,设它指向y,指向它的是z,那么肯定将y、z交换,这样x、y在一个环里,然后剩下一个len-2的环,不过因为z不能再动了,所以对这个环的拆分就唯一了,一直下去可以把环拆开,并且只考虑这个环的方案数是len。

有多个环时,这些环的选择时可以相交的。

现在有两个环,

一定有一步交换位于不同环上的两个点,如果依然想拆成若干长度不超过2的环,那么剩下的交换也是唯一的。

由于对称问题,也只有len种。

显然两个环的时候必须长度相等才有解。

然后我并不会证更多环没有解。

然后就可以设个\(f[i][j]\)表示长度为i的有j个环的方案数

\(f[i][j]=f[i][j-1]*i+f[i][j-2]*(j-1)*i\),复杂度是调和级数

那么接下来\(O(k!)\)暴力的话也TLE了。

考虑确定每个点就是把若干条链拼起来,那么就只用集合划分了。

Code:


#include<bits/stdc++.h>
#define fo(i, x, y) for(int i = x, B = y; i <= B; i ++)
#define ff(i, x, y) for(int i = x, B = y; i < B; i ++)
#define fd(i, x, y) for(int i = x, B = y; i >= B; i --)
#define ll long long
#define pp printf
#define hh pp("\n")
using namespace std; const int mo = 1e9 + 7; ll ksm(ll x, ll y) {
ll s = 1;
for(; y; y /= 2, x = x * x % mo)
if(y & 1) s = s * x % mo;
return s;
} const int N = 1e6 + 5; int n, k, a[N], r[N], q[N];
ll fac[15];
vector<ll> f[N], nf[N];
int b[N], b0, cnt[N];
int c[N], c0, d[N];
ll ans, sum, s2; void dg(int x) {
if(x > b0) {
ll s = sum, s3 = s2;
fo(i, 1, c0) {
s3 += c[i] > 2;
s = s * nf[c[i]][cnt[c[i]]] % mo;
cnt[c[i]] ++;
s = s * f[c[i]][cnt[c[i]]] % mo;
}
ll xs = 1;
fo(i, 1, c0) xs = xs * fac[d[i] - 1] % mo;
ans = (ans + (s3 ? s : 1) * xs) % mo;
fo(i, 1, c0) cnt[c[i]] --;
return;
}
fo(i, 1, c0) {
c[i] += b[x];
d[i] ++;
dg(x + 1);
d[i] --;
c[i] -= b[x];
}
c[++ c0] = b[x]; d[c0] = 1;
dg(x + 1);
d[c0] = 0; c0 --;
} int main() {
freopen("determination.in", "r", stdin);
freopen("determination.out", "w", stdout);
fac[0] = 1; fo(i, 1, 15) fac[i] = fac[i - 1] * i % mo;
scanf("%d %d", &n, &k);
fo(i, 1, n) scanf("%d", &a[i]), r[a[i]] ++;
fo(i, 1, n) {
f[i].resize(n / i + 1);
nf[i].resize(n / i + 1);
f[i][0] = 1;
fo(j, 1, n / i) {
f[i][j] = f[i][j - 1];
if(j >= 2) f[i][j] = (f[i][j] + f[i][j - 2] * (j - 1)) % mo;
f[i][j] = f[i][j] * i % mo;
}
ll s = 1;
fo(j, 1, n / i) s = s * f[i][j] % mo;
s = ksm(s, mo - 2);
fd(j, n / i, 0) nf[i][j] = s, s = s * f[i][j] % mo;
s = 1;
fo(j, 1, n / i) {
nf[i][j] = nf[i][j] * s % mo;
s = s * f[i][j] % mo;
}
}
fo(i, 1, n) if(!r[i]) {
int x = i; q[x] = 1;
b[++ b0] = 0;
do {
b[b0] ++;
x = a[x];
q[x] = 1;
} while(x != 0);
}
fo(i, 1, n) if(!q[i]) {
int x = i, len = 0;
do {
len ++;
x = a[x];
q[x] = 1;
} while(x != i);
cnt[len] ++;
}
sum = 1;
fo(i, 1, n) sum = sum * f[i][cnt[i]] % mo, s2 += cnt[i] * (i > 2);
dg(1);
pp("%lld", ans);
}

CF 398 E(动态规划)的更多相关文章

  1. CF 848E(动态规划+分治NTT)

    传送门: http://codeforces.com/problemset/problem/848/E 题解: 假设0-n一定有一条边,我们得到了一个方案,那么显然是可以旋转得到其他方案的. 记最大的 ...

  2. 四角递推(CF Working out,动态规划递推)

    题目:假如有A,B两个人,在一个m*n的矩阵,然后A在(1,1),B在(m,1),A要走到(m,n),B要走到(1,n),两人走的过程中可以捡起格子上的数字,而且两人速度不一样,可以同时到一个点(哪怕 ...

  3. CF 1096D Easy Problem [动态规划]

    题目链接:http://codeforces.com/problemset/problem/1096/D 题意: 有一长度为n的字符串,每一字符都有一个权值,要求现在从中取出若干个字符,使得字符串中没 ...

  4. CF思维联系–CodeForces - 225C. Barcode(二路动态规划)

    ACM思维题训练集合 Desciption You've got an n × m pixel picture. Each pixel can be white or black. Your task ...

  5. CF 494 F. Abbreviation(动态规划)

    题目链接:[http://codeforces.com/contest/1003/problem/F] 题意:给出一个n字符串,这些字符串按顺序组成一个文本,字符串之间用空格隔开,文本的大小是字母+空 ...

  6. CF 414B Mashmokh and ACM 动态规划

    题意: 给你两个数n和k.求满足以下条件的数列有多少个. 这个数列的长度是k: b[1], b[2], ……, b[k]. 并且 b[1] <= b[2] <= …… <= b[k] ...

  7. CF思维联系– Codeforces-987C - Three displays ( 动态规划)

    ACM思维题训练集合 It is the middle of 2018 and Maria Stepanovna, who lives outside Krasnokamensk (a town in ...

  8. 【DP专辑】ACM动态规划总结

    转载请注明出处,谢谢.   http://blog.csdn.net/cc_again?viewmode=list          ----------  Accagain  2014年5月15日 ...

  9. 【CF932G】Palindrome Partition(回文树,动态规划)

    [CF932G]Palindrome Partition(回文树,动态规划) 题面 CF 翻译: 给定一个串,把串分为偶数段 假设分为了\(s1,s2,s3....sk\) 求,满足\(s_1=s_k ...

随机推荐

  1. POJ-1639 Picnic Planning 度数限制最小生成树

    解法参考的论文:https://wenku.baidu.com/view/8abefb175f0e7cd1842536aa.html 觉得网上的代码好像都是用邻接矩阵来实现的,觉得可能数据量大了会比较 ...

  2. Codeforces 1111E DP + 树状数组 + LCA + dfs序

    题意:给你一颗树,有q次询问,每次询问给你若干个点,这些点可以最多分出m组,每组要满足两个条件:1:每组至少一个点,2:组内的点不能是组内其它点的祖先,问这样的分组能有多少个? 思路:https:// ...

  3. VersionInformation.dwPlatformId == 2

    Result:=OSVI.dwPlatformId;  {  返回值:  为0表示为win3x系统;  为1表示为win9x系统;  为2表示为winNT;  为3表示为win2000系统;   }

  4. Eclipse编辑Spring配置文件xml时自动提示类class包名

    第一步,先查看下自己的Eclipse是什么版本,步骤如下: 1.1 点击Eclipse菜单‘Help  -> About Eclipse’,如下图: 1.2 点击Eclipse图标如下,看清楚哦 ...

  5. Eclipse快速生成一个JavaBean类的方法

    原文: https://jingyan.baidu.com/article/948f5924156866d80ff5f921.html Eclipse快速生成一个JavaBean类的方法 听语音 | ...

  6. 分布式锁实现(一):Redis

    前言 单机环境下我们可以通过JAVA的Synchronized和Lock来实现进程内部的锁,但是随着分布式应用和集群环境的出现,系统资源的竞争从单进程多线程的竞争变成了多进程的竞争,这时候就需要分布式 ...

  7. 如何设置和使用MacOS上的Microsoft Office套件

    自30年前首次发布以来,Microsoft Office已成为全球最受欢迎的生产力套件之一.借助Word和Excel for Mac之类的程序,毫无疑问,MS Office套件在任何计算机上都是必须下 ...

  8. Python爬虫实战——反爬策略之模拟登录【CSDN】

    在<Python爬虫实战-- Request对象之header伪装策略>中,我们就已经讲到:=="在header当中,我们经常会添加两个参数--cookie 和 User-Age ...

  9. ( vant ) 新手踩坑

    最近在用vant 做H5 页面,坑太他娘的坑娘啊!!!!!!!!!!!!!!!! 1,修改vant组件样式问题 vant 修改组件的样式时,在scoped 属性下没有效果.如果去掉scope 会造成全 ...

  10. Mysql安装多版本数据库

    1.下载对应版本压缩包 2.解压缩文件 3.到解压缩文件,添加my.ini文件,修改相关的配置,如端口,文件路径等 # For advice on how to change settings ple ...