Codeforces Round #609 (Div. 2) A-E简要题解
contest链接:https://codeforces.com/contest/1269
A. Equation
题意:输入一个整数,找到一个a,一个b,使得a-b=n,切a,b都是合数
思路:合数非常多,从1开始枚举b,a就是b+n,每次check一下a,b是否是合数,是的话直接输出,break即可
AC代码:
#include<iostream>
#include<string>
#include<vector>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
ll mod = 1e9+;
const int maxn = 2e5+;
bool check(ll x){
for(int i = ;i<=sqrt(x);i++){
if(x%i == ) return true;
}
return false;
}
int main(){
ll n;cin>>n;
ll cur = ;
while(){
if(check(cur)&&check(cur+n)){
cout<<cur+n<<" "<<cur;
return ;
}
cur++;
}
return ;
}
B. Modulo Equality
题意:有两个序列a,b,要求找到一个相对最小的x,让a序列中的所有元素+x再mod m变为序列b,两个序列内部都可以随意交换
思路:可以发现数据范围很小,直接就可以暴力做。首先对a序列和b序列都进行一下从小到大的排序,首先判一下当前的a序列和b序列是否相等,如果相等直接输出0即可。不相等再进行枚举,以b[1]为基准,枚举a[i]中的每个元素,计算一下b[1]和a[i]模运算差值,让a序列所有的元素加上这个差值之后再判断一下是否和b[i]中的每一个元素相等,取最小的x即可。
AC代码:
#include<iostream>
#include<string>
#include<vector>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
ll mod = 1e9+;
const int maxn = 2e5+;
int main(){
ll cur = ;
ll n,m;cin>>n>>m;
ll a[],b[];
for(int i = ;i<=n;i++) cin>>a[i];
for(int j = ;j<=n;j++) cin>>b[j];
sort(a+,a+n+);
sort(b+,b+n+);
int f = ;
for(int i = ;i<=n;i++){
if(a[i]!=b[i]) f = ;
}
if(f == ) {
cout<<;
return ;
}
ll ans = 1e9+;
ll c[];
for(int i = ;i<=n;i++){
ll x = b[]>a[i]?b[]-a[i]:b[]+m-a[i];
for(int j = ;j<=n;j++){
c[j] = (a[j]+x)%m;
}
sort(c+,c+n+);
ll f = ;
for(int j = ;j<=n;j++){
if(c[j]!=b[j]) {
f = ;
break;
}
}
if(f == ){
ans = min(ans,x);
}
}
cout<<ans;
return ;
}
C. Long Beautiful Integer
题意:给一个长度为n(长度数据范围2e5)的数字,要求把n转化为大于n且尽可能小的数,使得新的数字每一位 bi = bi+k。
思路:首先对数的前k位进行存储,第k位之后,每一位的数字都受到前k位影响,因为前k位一旦有变换,k位之后必定也需要改变才能满足bi = bi+k,那么只需要对前k位进行枚举即可,每次让前k位组成的数字+1,再变换k位之后的数字,如果这个数字大于最初的n,那么就是break,已经是最小的答案了。同时需要注意一下进位的问题,比如19999,+1之后变为20000,这个也需要处理一下。
AC代码:
#include<iostream>
#include<string>
#include<vector>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
ll mod = 1e9+;
const int maxn = 2e5+;
int main(){
ll n,k;cin>>n>>k;
string s;
cin>>s;
string ans = s;
string ak = "";
for(int i = ;i<k;i++){
ak+=s[i];
}
for(int i = k;i<n;i++){
ans[i] = ak[i%k];
}
for(int i = k;i<n;i++){
if(s[i]<ans[i]){
break;
}
if(s[i] == ans[i]){
continue;
}
if(s[i]>ans[i]){
int cur = k - ;
while(ak[cur] == ''){
ak[cur] = '';//处理进位,让所有的9变为0,遇到第一个不是9的让其+1即可
cur--;
}
ak[cur] = ak[cur] + ;
break;
}
}
for(int i = ;i<n;i++){
ans[i] = ak[i%k];
}
cout<<ans.size()<<endl;
cout<<ans;
return ;
}
D. Domino for Young
题意:给一个不规则的网格,在上面放置多米诺骨牌,多米诺骨牌长度要么是1x2,要么是2x1大小,问最多放置多米诺骨牌的数量。
思路:首先这是一个结论题,对每个方格进行染色,一个方格染黑色,周围邻近的就染白色,答案就是黑色方格数量和白色方格数量的最小值。这个结论可以用二分图进行证明:把问题抽象成最大二分图匹配,每两个点之间连一条边。一个格子和周围格子连一条边,如果一个格子周围的还没被匹配,那么匹配数+1。如果一个格子周围已经全部被匹配完,那么该格子可以增广到任意一个为匹配位置,匹配数+1。所以只要在另一种颜色格子数量充沛的情况下,每一次匹配都能对匹配数贡献1,所以答案就是两种颜色的最小值。
AC代码:
#include<iostream>
#include<string>
#include<vector>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
ll mod = 1e9+;
const int maxn = 2e5+;
int main(){
ll black = , white = ;
int n;cin>>n;
int cur = ;
for(int i = ;i<n;i++){
ll a ;cin>>a;
if(cur == ){
black +=(a/+a%);
white +=a/;
cur = ;
}
else{
cur = ;
black +=a/;
white +=(a/+a%);
}
}
ll ans = min(black,white);
cout<<ans;
return ;
}
E. K Integers
题意:给一个序列P1,P2,P3,P4....Pi,每次可以交换两个相邻的元素,执行最小次数的交换移动,使得最后存在一个子段1,2,…,k,这是题目所定义的f(k),题目要求求出所有的f(n),并依次输出。
思路:首先考虑逆序对问题,比如3 2 1 4这个序列,要使其变为1 2 3 4,最小的移动次数是这个序列中逆序对之和,2+1 = 3,逆序对是(3,2) (3,1)(2,1),但是在比如序列3 5 2 1 6 7 4 8 9,求f(4)怎么做?首先是不是把1 2 3 4这个序列聚成在一起,相连在一起,再去计算逆序对个数,两个过程所花费相加就是答案。那么这个题目就分为两个过程,1.聚合n个数字在一起。2.求逆序对的个数,两者花费相加就行。第1个过程如果使得聚合步数最少呢?其实就是求出聚合后的最中间的位置,其他所有的数字向这个位置靠近所花费的移动次数是最少的,这个过程可以用二分做。第2个过程可以用树状数组,也可以用线段树做。输入的时候记录每个数字的位置,建两个树状数组,一个树状数组维护数字出现的次数,用来求逆序对个数,另一个树状数组维护各个数字在原序列的位置。
#include<iostream>
#include<string>
#include<vector>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
ll mod = 1e9+;
const int maxn = 2e5+;
ll t[maxn],cnt[maxn];
ll pos[maxn];
int n;
inline int lowbit(ll x){
return x&(-x);
///算出x二进制的从右往左出现第一个1以及这个1之后的那些0组成数的二进制对应的十进制的数
}
void add(ll *b , int x, int k) {//单点修改
while (x <= n) { //不能越界
b[x] = b[x] + k;
x = x + lowbit(x);
}
}
ll getsum(ll *b,int x) { // a[1]……a[x]的和
ll ans = ;
while (x > ) {
ans = ans + b[x];
x = x - lowbit(x);
}
return ans;
}
int main(){
ios::sync_with_stdio(false);
cin.tie();
cin>>n;
for(int i = ;i<=n;i++){
int t;
cin>>t;
pos[t] = i;//记录t的位置
}
ll inv = ;//记录逆序对的个数
for(int i = ;i<=n;i++){
inv += (i--getsum(t,pos[i]));//每次统计逆序对的个数 ,累加即可
add(t,pos[i],);//在t数组上的pos[i]位置上+1
add(cnt,pos[i],pos[i]);// cnt数组上维护所有数组的位置,
if(i==){
cout<<<<" ";
continue;
}
int mid,l = ,r = n;
while(l<=r){//二分枚举中最中间的位置,所有数字向这个位置靠近
mid = (l+r)>>;
if(getsum(t,mid)*<=i){
l = mid+;
}
else{
r = mid-;
}
}
ll ans = ;
ll cntL = getsum(t,mid);//cntL在mid左边需要的数字个数之和
ll cntR = i - cntL;//cntR是mid右边需要的数字个数之和
ll indexL = getsum(cnt,mid);//mid左边需要数字的位置之和
ll indexR = getsum(cnt,n)-indexL;//mid右边需要数字的位置之和
ans+=((mid+(mid-cntL+))*cntL)/-indexL;//累加mid左边数字靠近邻近mid位置所需要的移动次数
ans+=(indexR-((mid++(mid+cntR))*cntR)/);//累加mid右边数字靠近邻近mid位置所需要的移动次数
cout<<ans+inv<<" ";//逆序对+聚合移动次数为答案
}
return ;
}
Codeforces Round #609 (Div. 2) A-E简要题解的更多相关文章
- Codeforces Round #609 (Div. 2)前五题题解
Codeforces Round #609 (Div. 2)前五题题解 补题补题…… C题写挂了好几个次,最后一题看了好久题解才懂……我太迟钝了…… 然后因为longlong调了半个小时…… A.Eq ...
- Codeforces Round #609 (Div. 2) D. Domino for Young
链接: https://codeforces.com/contest/1269/problem/D 题意: You are given a Young diagram. Given diagram i ...
- Codeforces Round #609 (Div. 2) C. Long Beautiful Integer
链接: https://codeforces.com/contest/1269/problem/C 题意: You are given an integer x of n digits a1,a2,- ...
- Codeforces Round #609 (Div. 2)
A题 给出n,求大于n的两个合数a和b,并且a-b = n 直接输出n的倍数即可 int n; int main() { cin >> n; cout << 9*n <& ...
- Codeforces Round #609 (Div. 2) 题解
Equation Modulo Equality Long Beautiful Integer Domino for Young K Integers Equation \[ Time Limit: ...
- Codeforces Round #609 (Div. 2) A到C题
签到,乘以两个相邻的合数 #include<bits/stdc++.h> using namespace std; int main(int argc, char const *argv[ ...
- Codeforces Round #609 (Div. 2) 【A,B,C】
题意:给一个n<=1e7,找两个合数a和b使得a-b的差为n. 构造a=3n,b=2n,必含有公因子n,只有当n是1的时候是特例. #include<bits/stdc++.h> u ...
- Codeforces Round #556 (Div. 2) D. Three Religions 题解 动态规划
题目链接:http://codeforces.com/contest/1150/problem/D 题目大意: 你有一个参考串 s 和三个装载字符串的容器 vec[0..2] ,然后还有 q 次操作, ...
- Codeforces Round #604 (Div. 2) E. Beautiful Mirrors 题解 组合数学
题目链接:https://codeforces.com/contest/1265/problem/E 题目大意: 有 \(n\) 个步骤,第 \(i\) 个步骤成功的概率是 \(P_i\) ,每一步只 ...
随机推荐
- requests库爬取需要登录的网站
#!usr/bin/env python #-*- coding:utf-8 _*- """ @author:lenovo @file: 登录人人网.py @time: ...
- js阻止事件冒泡(phpcms,浮窗第一次10秒弹出后每30秒弹出,动态更换日期)
/* v9_date_list 日期表 tiptime 考试日期(数据类型为日期) 如果要实现浮窗淡入淡出用jquery的("#main0").fadeIn(3500);淡出(&q ...
- JavaSE学习笔记(2)---面向对象基础
JavaSE学习笔记(2)---面向对象基础 1.面向对象具有三大特征:封装性.继承性和多态性,而面向过程没有继承性和多态性,并且面向过程的封装只是封装功能,而面向对象可以封装数据和功能.所以面向对象 ...
- 【Spring】事务(transactional)之初步理解
一. 场景 有一个定时器,做数据库表数据同步. 把数据库A的表table(DB_A_TABLE)同步到数据库B的表table(DB_B_TABLE). 对于DB_A_TABLE的每行数据要做一定的逻辑 ...
- CF895C Square Subsets [线性基]
线性基的题- 考虑平方数只和拆解质因子的个数的奇偶性有关系 比如说你 \(4\) 和 \(16\) 的贡献都是一样的.因为 \(4 = 2^2 , 16 = 2^4\) \(2\) 和 \(4\) 奇 ...
- 浏览器console控制台不显示编译错误/警告
浏览器正常显示报错应该是这样的 ,但是我一不小心右键给Hide message from...了,红色报错字体就没了,解决方法如下: 直接将红色框内的内容叉掉,恢复成filter就OK了
- PAT (Basic Level) Practice (中文)1076 Wifi密码 (15 分)
下面是微博上流传的一张照片:“各位亲爱的同学们,鉴于大家有时需要使用 wifi,又怕耽误亲们的学习,现将 wifi 密码设置为下列数学题答案:A-1:B-2:C-3:D-4:请同学们自己作答,每两日一 ...
- 【PHP】使用PHP抓取Bing每日图像并为己所用
Bing搜索的首页每天都会推送一张很漂亮的图片,把它保存下来,当做电脑桌面或是自己的网站背景图还不是美滋滋…… 今天的bing图片是这样的 既然要抓取这张图片,首先就得弄清这张图是从何而来的.经过对必 ...
- CQOI跳舞(网络流+二分答案)
题面见 https://www.luogu.org/problemnew/show/P3153 题意简述:有n个男生,n个女生,每一首歌时两位男女配对,然后同一对男女只能跳一场,一个人只会与不喜欢的人 ...
- C#在运行时自动引入正确的Dlls
设置程序Dlls的搜索路径 1.导入Native函数 /// <summary> /// 设置Dlls的搜索路径 /// </summary> /// <param na ...