hdu 6214 Smallest Minimum Cut(最小割的最少边数)
题目大意是给一张网络,网络可能存在不同边集的最小割,求出拥有最少边集的最小割,最少的边是多少条?
思路:题目很好理解,就是找一个边集最少的最小割,一个方法是在建图的时候把边的容量处理成C *(E+1 )+1,C是初始容量,E是边的个数,假设之前不做此操作处理求得最大流是maxf,处理之后跑dinic求出的最大流就是 maxf *(E+1)+ n , n就代表用了几条边,其中 n 必定是小于 E+1的,这样把处理之后的最大流模上(E+1)得到n,其中n就是最小割的边数,因为每用到一条边得到的最大流就会+1,那么+n就是用了n条边,这个n就是最少边集的个数。
AC 代码:
#include<iostream>
#include<queue>
#include<algorithm>
#include<vector>
#include<cstring>
using namespace std;
const int maxn = 205;
const int MAX = 0x3f3f3f3f;
struct node{
vector<int> vex;//某个节点连接的点
vector<int> num;//连接节点边的序号
}g[maxn];
struct edge{
int u,v,c;
}e[maxn*maxn];
int edgenum,sp,tp;
int d[maxn];
void addedge(int u,int v,int c){
e[edgenum].u = u;
e[edgenum].v = v;
e[edgenum].c = c;
g[u].vex.push_back(v),g[u].num.push_back(edgenum++);
// 建立双向边操作
e[edgenum].u = v;
e[edgenum].v = u;
e[edgenum].c = 0;
g[v].num.push_back(edgenum++),g[v].vex.push_back(u);
}
int bfs(){
memset(d,-1,sizeof(d));
queue<int> q;
q.push(sp);
d[sp] = 0;
while(!q.empty()){
int now = q.front();
q.pop();
for(int i = 0;i<g[now].vex.size() ;i++ ){
int tv = g[now].vex[i];
int te = g[now].num[i];
if(e[te].c > 0 && d[tv] == -1){
d[tv] = d[now] + 1;//增加深度
q.push(tv);
}
}
}
return d[tp]!=-1;
}
int dfs(int a,int b){
int r = 0;
if(a == tp){
return b;
}
for(int i = 0;i<g[a].num.size()&& r<b ;i++ ){
int tv = g[a].vex[i];
int te = g[a].num[i];
if(e[te].c > 0 && d[tv] == d[a] + 1){
int tc = min(e[te].c ,b - r);//求出可以流过的流量
tc = dfs(tv,tc);//递归寻找增广路
r+=tc;
e[te].c-=tc;
e[te^1].c+=tc;
}
}
if(!r){
d[a] = -2;
}
return r;
}
int dinic(){
int total = 0;
while(bfs()){
while(1){
int t = dfs(sp,MAX);
if(!t){//找不到增广路,t=0,循环终止
break;
}
total+=t;
}
}
return total;
}
int main(){
int t;
cin>>t;
while(t--){
int n,m;
cin>>n>>m;
cin>>sp>>tp;
edgenum = 0;
for(int i = 0;i<maxn;i++){
g[i].num.clear() ,g[i].vex.clear() ;
}
for(int i = 0;i<m;i++){
int u,v,w;
cin>>u>>v>>w;
addedge(u,v,w*(m+1)+1); //边容量扩大
}
int ans = dinic();
cout<<ans%(m+1)<<endl;
}
return 0;
}
hdu 6214 Smallest Minimum Cut(最小割的最少边数)的更多相关文章
- HDU 6214 Smallest Minimum Cut 最小割,权值编码
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6214 题意:求边数最小的割. 解法: 建边的时候每条边权 w = w * (E + 1) + 1; 这 ...
- HDU 6214 Smallest Minimum Cut (最小割且边数最少)
题意:给定上一个有向图,求 s - t 的最小割且边数最少. 析:设边的容量是w,边数为m,只要把每边打容量变成 w * (m+1) + 1,然后跑一个最大流,最大流%(m+1),就是答案. 代码如下 ...
- hdu 6214 Smallest Minimum Cut[最大流]
hdu 6214 Smallest Minimum Cut[最大流] 题意:求最小割中最少的边数. 题解:对边权乘个比边大点的数比如300,再加1 ,最后,最大流对300取余就是边数啦.. #incl ...
- HDU 6214.Smallest Minimum Cut 最少边数最小割
Smallest Minimum Cut Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Oth ...
- HDU 6214 Smallest Minimum Cut 【网络流最小割+ 二种方法只能一种有效+hdu 3987原题】
Problem Description Consider a network G=(V,E) with source s and sink t . An s-t cut is a partition ...
- HDU 6214 Smallest Minimum Cut(最少边最小割)
Problem Description Consider a network G=(V,E) with source s and sink t. An s-t cut is a partition o ...
- hdu 6214 : Smallest Minimum Cut 【网络流】
题目链接 ISAP写法 #include <bits/stdc++.h> using namespace std; typedef long long LL; namespace Fast ...
- POJ 2914 Minimum Cut 最小割图论
Description Given an undirected graph, in which two vertices can be connected by multiple edges, wha ...
- POJ2914 Minimum Cut —— 最小割
题目链接:http://poj.org/problem?id=2914 Minimum Cut Time Limit: 10000MS Memory Limit: 65536K Total Sub ...
随机推荐
- WPF实现高仿统计标题卡
飘哇~~~,在家数瓜子仁儿,闲来无事,看东看西,也找点儿,最近正在看看WPF动画,光看也是不行,需要带着目的去学习,整合知识碎片,恰巧,看到Github中一个基于Ant Designer设计风格的后台 ...
- vue之项目打包部署到服务器
这是今年的第一篇博客.整理一下vue如何从项目打包到部署服务器,给大家做下分享,希望能给大家带来或多或少的帮助,喜欢的大佬们可以给个小赞,如果有问题也可以一起讨论下. 第一步:这是很关键的一步.打开项 ...
- laravle中常见的数据库加密
// 1.md5加密 $str=md5('123456'); // 2.base64_decode加密 $str2=base64_encode('123456'); // 2.1 base64_解密 ...
- CSRF漏洞原理
跨站脚本伪造 用户与服务器端已进行了身份认证,站点已经对用户生成的session,完全信任了,然后此时黑客通过社工发过来一个不友好的链接, 让用户点击请求此站点,站点完全信任这个请求,按照黑客的这个请 ...
- Gin_中间件
gin可以构建中间件,但它只对注册过的路由函数起作用 对于分组路由,嵌套使用中间件,可以限定中间件的作用范围 中间件分为全局中间件,单个路由中间件和群组中间件 gin中间件必须是一个 gin.Hand ...
- uabntu命令行
1.命令行 命令行中令字体大小变大:ctrl+shift+"+" 命令行中令字体大小变小:ctrl+'-' 不执行:ctrl+c 下一页:f 上一页: ...
- [P1361] 小M的作物 - 最小割
没想到今天早上的第一题网络流就血了这么多发 从经典的二选一问题上魔改 仍然考虑最小割 #include <bits/stdc++.h> using namespace std; #defi ...
- 最长公共子串2(LCS2) lg SP1812
题意:n个字符串(n<=10)求最长公共子串的长度 前置技能点:https://www.cnblogs.com/wenci/p/10432932.html (两个字符串求最长公共子串的长度) 既 ...
- RN开发-Navigator
1.在入口组件render方法中返回<Navigator> let defaultName = 'Welcome'; let defaultCo ...
- ASP.NET Identity-验证与授权及管道事件
https://www.cnblogs.com/OceanEyes/p/thinking-in-asp-net-mvc-apply-asp-net-identity-authentication.ht ...