题目链接:http://codeforces.com/problemset/problem/1166/E

说明

  1. LCM(一个集合) 为这个集合中所有元素的最小公倍数。
  2. 如果$A \subseteq B,LCM(A) \leq LCM(B)$。

题目大意

  给定由 n 个整数组成的集合 A 。现给定 m 组集合,每个集合 Si 都是 A 的一个真子集,求是否存在集合 A 使得对$\forall_{1 \leq i \leq m} \ 不等式LCM(S_i) > LCM(A - S_i)恒成立$。

分析

  考虑任意两个不同集合 Si 和 Sj,它们有两种可能情况:
  1. 无交集:$LCM(S_i) \geq LCM(A - S_i) \geq LCM(S_j) 和 LCM(S_j) \geq LCM(A - S_j) \geq LCM(S_i)矛盾$,所以只要有两个集合没有交集,A就不存在。
  2. 有交集:有交集一不一定存在 A 呢?不晓得,只能说可能,反正题目只需要输出可不可能。
  PS:用 set 做超时,自己写位图吧。

代码如下

 #include <bits/stdc++.h>
using namespace std; #define INIT() ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define Rep(i,n) for (int i = 0; i < (n); ++i)
#define For(i,s,t) for (int i = (s); i <= (t); ++i)
#define rFor(i,t,s) for (int i = (t); i >= (s); --i)
#define ForLL(i, s, t) for (LL i = LL(s); i <= LL(t); ++i)
#define rForLL(i, t, s) for (LL i = LL(t); i >= LL(s); --i)
#define foreach(i,c) for (__typeof(c.begin()) i = c.begin(); i != c.end(); ++i)
#define rforeach(i,c) for (__typeof(c.rbegin()) i = c.rbegin(); i != c.rend(); ++i) #define pr(x) cout << #x << " = " << x << " "
#define prln(x) cout << #x << " = " << x << endl #define LOWBIT(x) ((x)&(-x)) #define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin()) #define ms0(a) memset(a,0,sizeof(a))
#define msI(a) memset(a,inf,sizeof(a))
#define msM(a) memset(a,-1,sizeof(a)) #define MP make_pair
#define PB push_back
#define ft first
#define sd second template<typename T1, typename T2>
istream &operator>>(istream &in, pair<T1, T2> &p) {
in >> p.first >> p.second;
return in;
} template<typename T>
istream &operator>>(istream &in, vector<T> &v) {
for (auto &x: v)
in >> x;
return in;
} template<typename T1, typename T2>
ostream &operator<<(ostream &out, const std::pair<T1, T2> &p) {
out << "[" << p.first << ", " << p.second << "]" << "\n";
return out;
} inline int gc(){
static const int BUF = 1e7;
static char buf[BUF], *bg = buf + BUF, *ed = bg; if(bg == ed) fread(bg = buf, , BUF, stdin);
return *bg++;
} inline int ri(){
int x = , f = , c = gc();
for(; c<||c>; f = c=='-'?-:f, c=gc());
for(; c>&&c<; x = x* + c - , c=gc());
return x*f;
} typedef long long LL;
typedef unsigned long long uLL;
typedef pair< double, double > PDD;
typedef pair< int, int > PII;
typedef pair< string, int > PSI;
typedef set< int > SI;
typedef vector< int > VI;
typedef map< int, int > MII;
typedef pair< LL, LL > PLL;
typedef vector< LL > VL;
typedef vector< VL > VVL;
const double EPS = 1e-;
const LL inf = 0x7fffffff;
const LL infLL = 0x7fffffffffffffffLL;
const LL mod = 1e18 + ;
const int maxN = 1e4 + ;
const LL ONE = ;
const LL evenBits = 0xaaaaaaaaaaaaaaaa;
const LL oddBits = 0x5555555555555555; struct BitMap{
char bm[maxN >> ]; // 把第 x 位设置为 1
void set(int x){
bm[x >> ] |= 0x80 >> (x & 0x07);
}
// 把第 x 位设置为 1
void clear(int x){
bm[x >> ] &= ~(0x80 >> (x & 0x07));
}
// 获得第 x 位值
bool get(int x){
return bm[x >> ] & (0x80 >> (x & 0x07));
} bool operator& (const BitMap &x) const{
Rep(i, maxN >> ) if(bm[i] & x.bm[i]) return true;
return false;
} bool operator| (const BitMap &x) const{
Rep(i, maxN >> ) if(bm[i] | x.bm[i]) return true;
return false;
}
}; int m, n, s;
BitMap bitMask[];
bool ans = true; int main(){
INIT();
cin >> m >> n;
Rep(i, m) {
cin >> s;
Rep(j, s) {
int x;
cin >> x;
bitMask[i].set(x);
}
} Rep(i, m) {
For(j, i + , m - ) {
if(bitMask[i] & bitMask[j]) continue;
ans = false;
i = m;
break;
}
} if(ans) cout << "possible" << endl;
else cout << "impossible" << endl;
return ;
}

CodeForces 1166E The LCMs Must be Large的更多相关文章

  1. CF1166E The LCMs Must be Large

    CF1166E The LCMs Must be Large 构造趣题 正着推其实很不好推 不妨大力猜结论 如果两两集合都有交,那么一定可以 证明: 1.显然如果两个集合没有交,一定不可以 2.否则给 ...

  2. Codeforces Round #561 (Div. 2) E. The LCMs Must be Large(数学)

    传送门 题意: 有 n 个商店,第 i 个商店出售正整数 ai: Dora 买了 m 天的东西,第 i 天去了 si 个不同的个商店购买了 si 个数: Dora 的对手 Swiper 在第 i 天去 ...

  3. 【36.86%】【codeforces 558B】Amr and The Large Array

    time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...

  4. codeforces 558B B. Amr and The Large Array(水题)

    题目链接: B. Amr and The Large Array time limit per test 1 second memory limit per test 256 megabytes in ...

  5. CodeForces 1152F2 Neko Rules the Catniverse (Large Version)

    题目链接:http://codeforces.com/problemset/problem/1152/F2 题目大意 见http://codeforces.com/problemset/problem ...

  6. Codeforces 1166E(思维)

    题面 有一个长度为n的序列a,有m次操作.每一次操作一个人选a的一个子集x,另一个人会选x的补集y.且x集合中的数的最小公倍数比y集合中的数的最小公倍数大.现在给出所有x,判断是否有一个序列a满足条件 ...

  7. 降智严重——nowcoder练习赛46&&codeforces #561 Div2

    两场比赛降智不停,熬夜爆肝更掉rating nowcoder: https://ac.nowcoder.com/acm/contest/894#question T1:水题 T2:考虑a和b的子区间! ...

  8. codeforces631B

    Print Check CodeForces - 631B Kris works in a large company "Blake Technologies". As a bes ...

  9. Codeforces Round #312 (Div. 2)B. Amr and The Large Array 暴力

    B. Amr and The Large Array Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contes ...

随机推荐

  1. luoguP2709 小B的询问 [莫队]

    题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...

  2. STM32嵌入式开发学习笔记(七):串口通信(下)

    下面我们进行几个串口通信的实际应用. 实验一:发信实验,让开发板通过串口向电脑发送信息: #include <stdio.h> #include <stm32f10x.h> # ...

  3. Robotframework之下拉列表select

    下拉框控件很常见啊,主要说一下robotframework中怎么玩转下拉框,第一点要注意的就是,别看到下拉的就用select控件去操作,因为很多下拉列表用的不一定就是select控件.robotfra ...

  4. I/O复用select 使用简介

    一:五种I/O模型区分: 1.阻塞I/O模型      最流行的I/O模型是阻塞I/O模型,缺省情形下,所有套接口都是阻塞的.我们以数据报套接口为例来讲解此模型(我们使用UDP而不是TCP作为例子的原 ...

  5. linux:lrzsz安装

    Linux中的lrzsc是linux里可代替ftp上传和下载的程序. yum install lrzsc 没有可用软件包 lrzsc. 这时使用 -y即可安装 centos安装:yum -y inst ...

  6. kmalloc vs vmalloc

    kmalloc分配物理上连续的空间,可以不是整页大小的. vmalloc分配逻辑上连接的空间,可以不是物理上连接的.

  7. leetcode.字符串.14最长公共前缀-Java

    1. 具体题目 编写一个函数来查找字符串数组中的最长公共前缀.如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower","fl ...

  8. node+webpack+vue的环境搭建

      一般第一次搭建环境的时候,多多少少还是会出点状况的.这个时候多去百度,看牛人怎么解决,然后跟着尝试,多试几遍还是能解决的. 先说一下我安装的过程吧 1.我一开始按照官网的来搭建,失败了.报错内容是 ...

  9. python将字典列表导出为Excel文件的方法

    将如下的字典列表内容导出为Excel表格文件形式: ​ 关于上图字典列表的写入,请参考文章:https://blog.csdn.net/weixin_39082390/article/details/ ...

  10. 净心诀---python3生成器

    生成器的作用----减少程序运行的内存开销 生成器特点: 1.一个一个的取值,而不是一次性把所有数据创建出来,迭代器中的数据不取不创建2.只能按照顺序取,不能跳过也不能回头3.一个迭代器中的数据只能从 ...