传送门

•参考资料

  [1]:CF1204E Natasha, Sasha and the Prefix Sums(动态规划+组合数)

•题意

  由 n 个 和 个 -1 组成的 $C_{n+m}^{n}$ 个序列;

  对所有序列的最大前缀和求和;

  并规定最大前缀和最小是 0;

•题解

  定义 $(i,j)$ 表示序列由 i 个 1,j 个 -1 组成;

  $(i,j)$ 共有 $C_{i+j}^{i}$ 种不同的组合方式;

  $(i-1,j)$ 共有 $C_{i+j-1}^{i-1}$ 种不同的组合方式;

  $(i,j-1)$ 共有 $C_{i+j-1}^{i}$ 种不同的组合方式;

  如果同时在 $(i-1,j)$ 的 $C_{i+j-1}^{i-1}$ 和 $(i,j-1)$ 的 $C_{i+j-1}^{i}$ 种组合方式的末尾或开头分别插入 1 或 -1;

  那便是 $(i,j)$ 的不同的组合方式的种类数,即 $C_{i+j}^{i}=C_{i+j-1}^{i-1}+C_{i+j-1}^{i}$;

  根据 n,m 的范围($\leq 2000$),考虑用 DP 解决这道题目;

  首先,定义 $dp[i][j]$ 表示由 $(i,j)$ 组成的 $C_{i+j}^{i}$ 个序列,对所有序列的最大前缀和求和后的结果;

  有上述前置知识,很容易想到 $(i,j)$ 可由 $(i-1,j)$ 和 $(i,j-1)$ 得到;

  这也就是说,$dp[i][j]$ 可由 $dp[i-1][j]$ 和 $dp[i][j-1]$ 转移过来;

  因为 $(i,j)$ 可由 $(i-1,j)$ 和 $(i,j-1)$ 的末尾或开头插入 1 或 -1 得到,那到底是在开头插入还是结尾插入呢?

  因为题意让求的是前缀最大值之和,所以,我们考虑到在开头插入 1 或 -1:

    • 在 $(i-1,j)$ 的开头插入 1,也就意味着这 $C_{i+j-1}^{i-1}$ 个序列的前缀最大值都会增加 1,那么

      • $dp[i][j] += dp[i-1][j]+C_{i+j-1}^{i-1}$
    • 在 $(i,j-1)$ 的开头插入 -1,意味着这 $C_{i+j-1}^{i}$ 个序列的前缀最大值会减少 1,那么
      • $dp[i][j] += dp[i][j-1]-C_{i+j-1}^{i}+h[i][j-1]$

  

  $h[i][j-1]$ 是干啥用的呢?

  由题意,前缀最大值最小为 0,所以,在 $(i,j-1)$ 的开头插入 -1 的时候,前缀最大值为 0 的序列是不会减少 1 的;

  我们就需要将这些多减掉的 1 在加上;

  定义 $h[i][j]$ 表示 $(i,j)$ 的 $C_{i+j}^{i}$ 个序列种前缀最大值为 0 的个数;

  同样 $h[i][j]$ 可由 $h[i-1][j]$ 和 $h[i][j-1]$ 转移过来;

  考虑到 $h[i][j]$ 的定义,我们这次选择在 $(i-1,j)$ 和 $(i,j-1)$ 的结尾插入 1 或 -1;

  很容易想到,如果 $i > j$,一定有 $h[i][j]=0$,所以,我们考虑 $i \le j$ 的情况;

  因为是在结尾插入的,所以,前缀最大值第一次出现的位置是不会改变的,所以有 $h[i][j]=h[i-1][j]+h[i][j-1]$;

•Code

 #include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mem(a,b) memset(a,b,sizeof(a))
const int maxn=2e3+;
const int MOD=; int n,m;
ll dp[maxn][maxn];
ll h[maxn][maxn];
ll C[*maxn][*maxn]; void Init()
{
C[][]=;
for(int i=;i < *maxn;++i)
for(int j=;j <= i;++j)
{
if(j == || j == i)
C[i][j]=;
else
C[i][j]=C[i-][j]+C[i-][j-];
C[i][j] %= MOD;
} mem(h,);
for(int j=;j < maxn;++j)
h[][j]=;
for(int i=;i < maxn;++i)
for(int j=i;j < maxn;++j)
h[i][j]=(h[i-][j]+h[i][j-])%MOD; dp[][]=;
for(int i=;i < maxn;++i)
dp[i][]=i;
for(int j=;j < maxn;++j)
dp[][j]=;
for(int i=;i < maxn;++i)
for(int j=;j < maxn;++j)
{
dp[i][j]=(dp[i-][j]+C[i+j-][j])+(dp[i][j-]-C[i+j-][i]+h[i][j-]);
dp[i][j]=(dp[i][j]+MOD)%MOD;
}
} int main()
{
Init();
scanf("%d%d",&n,&m);
printf("%lld\n",dp[n][m]); return ;
}

CodeForces 1204E"Natasha, Sasha and the Prefix Sums"(动态规划 or 组合数学--卡特兰数的应用)的更多相关文章

  1. CodeForces - 1204E Natasha, Sasha and the Prefix Sums (组合数学,卡特兰数扩展)

    题意:求n个1,m个-1组成的所有序列中,最大前缀之和. 首先引出这样一个问题:使用n个左括号和m个右括号,组成的合法的括号匹配(每个右括号都有对应的左括号和它匹配)的数目是多少? 1.当n=m时,显 ...

  2. Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学

    Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学 [Problem Description] ...

  3. [CF1204E]Natasha,Sasha and the Prefix Sums 题解

    前言 本文中的排列指由n个1, m个-1构成的序列中的一种. 题目这么长不吐槽了,但是这确实是一道好题. 题解 DP题话不多说,直接状态/变量/转移. 状态 我们定义f表示"最大prefix ...

  4. E. Natasha, Sasha and the Prefix Sums

    http://codeforces.com/contest/1204/problem/E 给定n个 1 m个 -1的全排 求所有排列的$f(a) = max(0,max_{1≤i≤l} \sum_{j ...

  5. CF1204E Natasha, Sasha and the Prefix Sums(组合数学)

    做法一 \(O(nm)\) 考虑\(f(i,j)\)为i个+1,j个-1的贡献 \(f(i-1,j)\)考虑往序列首添加一个\(1\),则贡献\(1\times\)为序列的个数:\(C(j+i-1,i ...

  6. CF1204E Natasha, Sasha and the Prefix Sums (卡塔兰数推理)

    题面 题解 把题意变换一下,从(0,0)走到(n,m),每次只能网右或往上走,所以假设最大前缀和为f(n),那么走的时候就要到达但不超过 y = x-f(n) 这条线, 我们可以枚举答案,然后乘上方案 ...

  7. CodeForces 837F - Prefix Sums | Educational Codeforces Round 26

    按tutorial打的我血崩,死活挂第四组- - 思路来自FXXL /* CodeForces 837F - Prefix Sums [ 二分,组合数 ] | Educational Codeforc ...

  8. Educational Codeforces Round 26 [ D. Round Subset ] [ E. Vasya's Function ] [ F. Prefix Sums ]

    PROBLEM D - Round Subset 题 OvO http://codeforces.com/contest/837/problem/D 837D 解 DP, dp[i][j]代表已经选择 ...

  9. Codeforces 837F Prefix Sums

    Prefix Sums 在 n >= 4时候直接暴力. n <= 4的时候二分加矩阵快速幂去check #include<bits/stdc++.h> #define LL l ...

随机推荐

  1. 关于父组件通过v-on接收子组件多个参数的一点研究

    写组件的时候遇到一个需求,我需要在子组件向父组件传递信息 this.$emit('myEvent', 信息1, 信息2) 在父组件使用v-on来接收 <my-component @myEvent ...

  2. python mooc 3维可视化<第一周第一单元>

    基本含义 数据->图像 分类 重点关注空间数据的可视化 方法 二维标量数据场 三维标量数据场 二位标量数据场 颜色映射法 等值线法 立体图法 层次分割法 三维标量数据场 面绘制法 体绘制法 展示 ...

  3. ThInkPHP验证码不显示,解决方法汇总

    出现ThInkPHP验证码不显示的情况 官方提示如下:如果无法显示验证码,请检查:① PHP是否已经安装GD库支持:② 输出之前是否有任何的输出(尤其是UTF8的BOM头信息输出):(打开验证码文件为 ...

  4. VirtualBox安装,VirtualBox安装CentOS

    1.进入VirtualBox官网下载页,找到对应的版本 https://www.virtualbox.org/wiki/Downloads 按步骤安装好 2.进入CentOS官网下载页,找到对应的版本 ...

  5. fedora 安装 pidgin-lwqq

    因为 腾讯自带的linux for  qq 已经无法登陆,于是详尽各种办法在fedora 上安装 qq ,但均以失败高中.于是使用了几天web qq 但最终无法忍受,于是有研究起来了 pidgin-l ...

  6. python 正则表达式语法

  7. PHPCMS快速建站系列之邮箱验证

    1. 登录163邮箱,->设置,开启POP3服务->把SMTP服务器地址复制到PHPCMS后台. 2.开启客户端授权密码 3.填写相关信息,.可以在测试邮箱填入邮箱地址测试

  8. scala2.11读取文件

    1.读取行 要读取文件的所有行,可以调用scala.io.Source对象的getLines方法: import scala.io.Source val source = Source.fromFil ...

  9. laravle 事务

    DB::beginTransaction(); try{     $name = 'abc';     $result1 = Test::create(['name'=>$name]);     ...

  10. 【git基本操作】总结

    "git fetch GitLab: Your account has been blocked.fatal: Could not read from remote repository. ...