一、为什么RNN需要处理变长输入

假设我们有情感分析的例子,对每句话进行一个感情级别的分类,主体流程大概是下图所示:

思路比较简单,但是当我们进行batch个训练数据一起计算的时候,我们会遇到多个训练样例长度不同的情况,这样我们就会很自然的进行padding,将短句子padding为跟最长的句子一样。

比如向下图这样:

但是这会有一个问题,什么问题呢?比如上图,句子“Yes”只有一个单词,但是padding了5的pad符号,这样会导致LSTM对它的表示通过了非常多无用的字符,这样得到的句子表示就会有误差,更直观的如下图:

那么我们正确的做法应该是怎么样呢?

这就引出pytorch中RNN需要处理变长输入的需求了。在上面这个例子,我们想要得到的表示仅仅是LSTM过完单词"Yes"之后的表示,而不是通过了多个无用的“Pad”得到的表示:如下图:

二、pytorch中RNN如何处理变长padding

主要是用函数torch.nn.utils.rnn.pack_padded_sequence()以及torch.nn.utils.rnn.pad_packed_sequence()来进行的,分别来看看这两个函数的用法。

这里的pack,理解成压紧比较好。 将一个 填充过的变长序列 压紧。(填充时候,会有冗余,所以压紧一下)

输入的形状可以是(T×B×* )。T是最长序列长度,B是batch size,*代表任意维度(可以是0)。如果batch_first=True的话,那么相应的 input size 就是 (B×T×*)。

Variable中保存的序列,应该按序列长度的长短排序,长的在前,短的在后(特别注意需要进行排序)。即input[:,0]代表的是最长的序列,input[:, B-1]保存的是最短的序列。

参数说明:

input (Variable) – 变长序列 被填充后的 batch

lengths (list[int]) – Variable 中 每个序列的长度。(知道了每个序列的长度,才能知道每个序列处理到多长停止

batch_first (bool, optional) – 如果是True,input的形状应该是B*T*size。

返回值:

一个PackedSequence 对象。一个PackedSequence表示如下所示:

具体代码如下:

embed_input_x_packed = pack_padded_sequence(embed_input_x, sentence_lens, batch_first=True)
encoder_outputs_packed, (h_last, c_last) = self.lstm(embed_input_x_packed)

此时,返回的h_last和c_last就是剔除padding字符后的hidden state和cell state,都是Variable类型的。代表的意思如下(各个句子的表示,lstm只会作用到它实际长度的句子,而不是通过无用的padding字符,下图用红色的打钩来表示):

但是返回的output是PackedSequence类型的,可以使用:

encoder_outputs, _ = pad_packed_sequence(encoder_outputs_packed, batch_first=True)

将encoderoutputs在转换为Variable类型,得到的_代表各个句子的长度。

三、总结

这样综上所述,RNN在处理类似变长的句子序列的时候,我们就可以配套使用torch.nn.utils.rnn.pack_padded_sequence()以及torch.nn.utils.rnn.pad_packed_sequence()来避免padding对句子表示的影响

参考:

pytorch中如何处理RNN输入变长序列padding的更多相关文章

  1. keras: 在构建LSTM模型时,使用变长序列的方法

    众所周知,LSTM的一大优势就是其能够处理变长序列.而在使用keras搭建模型时,如果直接使用LSTM层作为网络输入的第一层,需要指定输入的大小.如果需要使用变长序列,那么,只需要在LSTM层前加一个 ...

  2. pytorch 对变长序列的处理

    一开始写这篇随笔的时候还没有了解到 Dateloader有一个 collate_fn 的参数,通过定义一个collate_fn 函数,其实很多batch补齐到当前batch最长的操作可以放在colla ...

  3. GCC 中零长数组与变长数组

    前两天看程序,发现在某个函数中有下面这段程序: int n; //define a variable n int array[n]; //define an array with length n 在 ...

  4. 0-3为变长序列建模modeling variable length sequences

    在本节中,我们会讨论序列的长度是变化的,也是一个变量 we would like the length of sequence,n,to alse be a random variable 一个简单的 ...

  5. 在C#中如何定义一个变长的结构数组?如果定义好了,如何获得当前数组的长度?

    用ArrayList,他就相当于动态数组,用add方法添加元素,remove删除元素,count计算长度

  6. [改善Java代码]若有必要,使用变长数组

    Java中的数组是定长的,一旦经过初始化声明就不可改变长度,这在实际使用的时候非常不方便.比如要对一个班级的学生信息进行统计,因为我们不知道班级会有多少个学生(随时可能有退学,入学,转学),所以需要一 ...

  7. pytorch 中的重要模块化接口nn.Module

    torch.nn 是专门为神经网络设计的模块化接口,nn构建于autgrad之上,可以用来定义和运行神经网络 nn.Module 是nn中重要的类,包含网络各层的定义,以及forward方法 对于自己 ...

  8. scala学习手记21 - 传递变长参数

    在Java中是可以使用变长参数的,如下面的方法: public void check(String ... args){ for(String tmp : args){ System.out.prin ...

  9. Pytorch基础——使用 RNN 生成简单序列

    一.介绍 内容 使用 RNN 进行序列预测 今天我们就从一个基本的使用 RNN 生成简单序列的例子中,来窥探神经网络生成符号序列的秘密. 我们首先让神经网络模型学习形如 0^n 1^n 形式的上下文无 ...

随机推荐

  1. DirectX11笔记(九)--Direct3D渲染5--CONSTANT BUFFERS

    原文:DirectX11笔记(九)--Direct3D渲染5--CONSTANT BUFFERS 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u0 ...

  2. KNN最近邻算法

    算法概述 K最近邻(K-Nearest Neighbor,KNN)算法,是著名的模式识别统计学方法,在机器学习分类算法中占有相当大的地位.它是一个理论上比较成熟的方法.既是最简单的机器学习算法之一,也 ...

  3. Permutations 全排列 回溯

    Given a collection of numbers, return all possible permutations. For example,[1,2,3] have the follow ...

  4. SQLServer —— EXISTS子查询

    一.删除数据库 use master go if exists (select * from sysdatabases where name = 'Demo') drop database Demo ...

  5. Leetcode804.Unique Morse Code Words唯一摩尔斯密码词

    国际摩尔斯密码定义一种标准编码方式,将每个字母对应于一个由一系列点和短线组成的字符串, 比如: "a" 对应 ".-", "b" 对应 &q ...

  6. JavaScript--兼容问题总结

    以下兼容主要面向IE8以上的兼容. 一.window.navigator浏览器信息 <script> console.log(window.navigator); // 用户浏览器的类型 ...

  7. 开发ArcEngine时的一个提示,无效位图,无法在类“***”中找到资源“***.bmp”

    解决办法:文件属性-生成操作 修改为 :嵌入式资源.

  8. bzoj1614 架设电话线

    Description Farmer John打算将电话线引到自己的农场,但电信公司并不打算为他提供免费服务.于是,FJ必须为此向电信公司支付一定的费用. FJ的农场周围分布着N(1 <= N ...

  9. Vue指令:v-for的用法;v-bind绑定class的几种写法;tab标签切换

    一.v-for 的用法 循环指令,可以遍历 Number.String.Object.Array: 循环数字.字符串:有2个参数,分别是value和索引值: 循环对象:有3个参数,分别是 属性值.属性 ...

  10. 【Leetcode链表】合并两个有序链表(21)

    题目 将两个有序链表合并为一个新的有序链表并返回.新链表是通过拼接给定的两个链表的所有节点组成的. 示例: 输入:1->2->4, 1->3->4 输出:1->1-> ...