HDU 6444 Neko's loop(单调队列)
The loop has a happy value aiai on the i−th(0≤i≤n−1)i−th(0≤i≤n−1) grid.
Neko likes to jump on the loop.She can start at anywhere. If she stands at i−thi−thgrid, she will get aiai happy value, and she can spend one unit energy to go to ((i+k)modn)−th((i+k)modn)−th grid. If she has already visited this grid, she can get happy value again. Neko can choose jump to next grid if she has energy or end at anywhere.
Neko has mm unit energies and she wants to achieve at least ss happy value.
How much happy value does she need at least before she jumps so that she can get at least ss happy value? Please note that the happy value which neko has is a non-negative number initially, but it can become negative number when jumping.
InputThe first line contains only one integer T(T≤50)T(T≤50), which indicates the number of test cases.
For each test case, the first line contains four integers n,s,m,k(1≤n≤104,1≤s≤1018,1≤m≤109,1≤k≤n)n,s,m,k(1≤n≤104,1≤s≤1018,1≤m≤109,1≤k≤n).
The next line contains nn integers, the i−thi−th integer is ai−1(−109≤ai−1≤109)ai−1(−109≤ai−1≤109)
OutputFor each test case, output one line "Case #x: y", where x is the case number (starting from 1) and y is the answer.Sample Input
2
3 10 5 2
3 2 1
5 20 6 3
2 3 2 1 5
Sample Output
Case #1: 0
Case #2: 2 题意:
给n个数字,当位于某一个数字时,可以得到这个数字的快乐值(可以重复获得),可以走m步,每次向后跳k格(循环),问快乐值要达到s,那么初始快乐值的最小值是多少?
思路:
这是2018ccpc的网络赛的题,暑假看着学长打比赛,在傍边连读题都帮不上。。。。 首先有一个显而易见的结论,对于某一个起点,跳着跳着就会回到起点,也就是说,一定存在循环节。
其次显而易见的,就是对于某一个数,只会存在于一个循环节中。
那么如果不考虑循环节的起点差异,找出所有循环节就是O(n)的。而实际上我们确实不用考虑,原因接下来再说。 我们可以轻易的算出某个循环节中所有元素的和--sum,因为存在负数,所以sum可能是负数。
再声明一下,len是循环节长度。
若sum<0,那么最多只需走min(m,len)步就可以得到最优解。
若sum>0,则需要先走m/len-1圈,为什么减一,其他博客有详解(博主太懒了),然后最多走m-(m/len-1)*len)步
先说这后面多出来的步数,假设是p步,这p步在sum<0时,p<=len,sum<0时,len<=p<=2*len。
为了求出这p步走出的最大值,我们使用单调队列。
首先求出循环节的前缀和sum,单调队列维护长度为p的滑窗的sum最小值。
维护 ans =( sum[i]-单调队列最小值 ) 的最大值就可以啦!
由于p的长度,要把循环节扩展3倍哟。 然后我们看到,这个单调队列,在ans取得最大值时,单调队列的最小值位置是不定的,所以很容易想到,不一定就是循环节找出来时的起点,所以我们很容易想到,这一个过程,相当于已经枚举了实际问题中的起点。
也就是,我们在取ans的最大值时的最小值位置,就可以当实际问题中的起点。
#include<iostream>
#include<algorithm>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#define fuck(x) cout<<#x<<" = "<<x<<endl;
#define debug(a,i) cout<<#a<<"["<<i<<"] = "<<a[i]<<endl;
#define ls (t<<1)
#define rs ((t<<1)+1)
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = ;
const int maxm = ;
const int inf = 2.1e9;
const ll Inf = ;
const int mod = ;
const double eps = 1e-;
const double pi = acos(-);
ll num[maxn];
vector<ll>vec;
bool vis[maxn];
ll sum[maxn];
ll n,s,m,k;
int len;
struct node
{
ll x;
int id;
};
deque<node>q;
ll solve(int p){
q.clear();
for(int i=;i<len;i++){
vec.push_back(vec[i]);
}
for(int i=;i<len;i++){
vec.push_back(vec[i]);
}
ll ans=;
sum[]=vec[];
for(int i=;i<len*;i++){
sum[i]=sum[i-]+vec[i];
}
for(int i=;i<len*;i++){
while(!q.empty()&&q.back().x>sum[i]){
q.pop_back();
}
if(!q.empty()&&q.front().id<i-p){q.pop_front();}
q.push_back(node{sum[i],i});
ans=max(ans,1ll*sum[i]-q.front().x);
}
return ans;
} int main()
{
int T;
scanf("%d",&T);
int cases=;
while(T--){
ll ans=;
cases++;
scanf("%lld%lld%lld%lld",&n,&s,&m,&k);
for(int i=;i<=n;i++){
scanf("%lld",&num[i]);
}
memset(vis,,sizeof(vis));
for(int i=;i<=n;i++){
vec.clear();
if(vis[i]){continue;}
int pos=i;
for(int j=;j<=m;j++){
vec.push_back(num[pos]);
vis[pos]=true;
pos+=k;
if(pos>n){pos%=n;}
if(vis[pos]){break;}
}
len=vec.size();
ll sum=;
for(int i=;i<len;i++){
sum+=vec[i];
}
if(sum<){
ans=max(ans,solve(len));
}
else{
ans=max(ans,solve(m-(m/len-)*len)+(m/len-)*sum);
}
}
printf("Case #%d: %lld\n",cases,max(0ll,s-ans));
}
return ;
}
HDU 6444 Neko's loop(单调队列)的更多相关文章
- hdu 6444 Neko's loop 单调队列优化DP
Neko's loop Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- HDU - 6444 Neko's loop(循环节+最大子段和)
http://acm.hdu.edu.cn/showproblem.php?pid=6444 题意 一个有n个数的环,每次循环走k步,走到每个点都有具体的权值,问在任意点出发最多走m步的情况下,一开始 ...
- HDU 6444 Neko's loop ( 2018 CCPC 网络赛 && 裴蜀定理 && 线段树 )
题目链接 题意 : 给出一个 n 个元素的环.可以任意选择起点.选完起点后.可以行走 m 步.每次前进 k 个单位.所走到的点将产生正或负贡献.问你一开始得准备多少才能使得初始资金加上在环上获取最大利 ...
- hdu 5945 Fxx and game(单调队列优化DP)
题目链接:hdu 5945 Fxx and game 题意: 让你从x走到1的位置,问你最小的步数,给你两种走的方式,1.如果k整除x,那么你可以从x走一步到k.2.你可以从x走到j,j+t<= ...
- hdu 3410 Passing the Message(单调队列)
题目链接:hdu 3410 Passing the Message 题意: 说那么多,其实就是对于每个a[i],让你找他的从左边(右边)开始找a[j]<a[i]并且a[j]=max(a[j])( ...
- hdu 6319 逆序建单调队列
题目传送门//res tp hdu 维护递增单调队列 根据数据范围推测应为O(n)的. 我们需要维护一个区间的信息,区间内信息是"有序"的,同时需要在O(1)的时间进行相邻区间的信 ...
- HDU - 5289 Assignment (RMQ+二分)(单调队列)
题目链接: Assignment 题意: 给出一个数列,问其中存在多少连续子序列,使得子序列的最大值-最小值<k. 题解: RMQ先处理出每个区间的最大值和最小值(复杂度为:n×logn),相 ...
- HDU 2490 Parade(DPの单调队列)(2008 Asia Regional Beijing)
Description Panagola, The Lord of city F likes to parade very much. He always inspects his city in h ...
- HDU - 5289:Assignment(单调队列||二分+RMQ||二分+线段树)
Tom owns a company and he is the boss. There are n staffs which are numbered from 1 to n in this com ...
随机推荐
- RDS 5.7三节点企业版时代的数据一致性解决方案
上篇我们看到了在MySQL主备模式下,我们在数据一致性上做了不少事情,但解决方案都有一定的局限性,适合部分场景或者解决不彻底的问题.随着以Google Spanner以及Amazon Aruora 为 ...
- rqnoj86 智捅马蜂窝
题目描述 背景 为了统计小球的方案数,平平已经累坏了.于是,他摘掉了他那800度的眼镜,躺在树下休息. 后来,平平发现树上有一个特别不一样的水果,又累又饿的平平打算去把它摘下来. 题目描述 现在,将大 ...
- QT,QLabel添加超链接
1.方法1:使用信号槽绑定方式 //设置超链接并绑定信号槽QLabel *linkLabel = new QLabel(); linkLabel->setText("<a hre ...
- git 密钥
为什么配置SHH呢?是为了方便我们剪切代码的时间免密码输入,特别方便如何配置呢? 首先安装git: 先到官网下载:官网下载git 然后安装后在桌面任意空白处右击,选择Git Base Here即可如下 ...
- oracle表内连接和外连接
n 概述 表连接分为内连接和外连接 n 内连接 内连接实际上就是利用where子句对两张表形成的笛卡尔集进行筛选,我们前面学习的查询都是内连接,也是在开发过程中用的最多的连接查询. 基本语法: s ...
- Java练习 SDUT-2401最大矩形面积
最大矩形面积 Time Limit: 1000 ms Memory Limit: 65536 KiB Problem Description 在一个矩形区域内有很多点,每个点的坐标都是整数.求一个矩形 ...
- git push的时候每次都要输入用户名和密码的问题解决
换了个ssh key,发现每次git push origin master的时候都要输入用户名和密码 原因是在添加远程库的时候使用了https的方式..所以每次都要用https的方式push到远程库 ...
- ArcGIS 如何设置地图显示范围大小
说来惭愧,学ArcGIS也已经有两年了.今天才知道原来ArcGIS是可以设置地图显示范围大小的 打开ArcMap,选择左边图例的图层(Layers) ,右键点击,选择属性(Properties..), ...
- 【vb.net机房收费系统】之sqlhelper 标签: 数据库 2015-05-17 10:47 819人阅读 评论(15)
在敲机房收费重构版的时候,用到了sqlhelper,当时不知道怎么开始,各种听别人说,张晗说,一定要用sqlhelper,特别好用,我当时没有用balabala~当时一听,哎哎哎,这个高级,要搞一搞, ...
- list extend 和 append
append 一次追加一个列表 extend 一次追加所有的元素 单个的形式加入