bzoj4033 树上染色
Description
Input
Output
Sample Input
//Serene
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=2000+10,INF=2e8;
int n,k;
long long dp[maxn][maxn],ans; int aa;char cc;
int read() {
aa=0;cc=getchar();
while(cc<'0'||cc>'9') cc=getchar();
while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar();
return aa;
} int fir[maxn],nxt[2*maxn],to[2*maxn],v[2*maxn],e=0;
void add(int x,int y,int z) {
to[++e]=y;nxt[e]=fir[x];fir[x]=e;v[e]=z;
to[++e]=x;nxt[e]=fir[y];fir[y]=e;v[e]=z;
} int fa[maxn],size[maxn];
void dfs(int pos,int dis) {
size[pos]=1;dp[pos][0]=dp[pos][1]=0;
for(int y=fir[pos];y;y=nxt[y]) {
if(to[y]==fa[pos]) continue;
fa[to[y]]=pos;
dfs(to[y],v[y]);
size[pos]+=size[to[y]];
for(int i=min(k,size[pos]);i>=0;--i)
for(int j=0;j<=i&&j<=size[to[y]];++j) {
dp[pos][i]=max(dp[pos][i],dp[pos][i-j]+dp[to[y]][j]);
}
}
if(dis) for(int i=0;i<=k;++i) dp[pos][i]+=(long long)dis*((long long)i*(k-i)+(long long)(size[pos]-i)*(n-k-size[pos]+i));
} int main() {
n=read();k=read(); int x,y,z;
for(int i=1;i<n;++i) {
x=read();y=read();z=read();
add(x,y,z);
}
for(int i=1;i<=k;++i) for(int j=1;j<=n;++j) dp[j][i]=0-(long long)INF;
dfs(1,0);
printf("%lld",dp[1][k]);
return 0;
}
bzoj4033 树上染色的更多相关文章
- BZOJ4033 HAOI2015 树上染色 【树上背包】
BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...
- [BZOJ4033][HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Stat ...
- 【BZOJ4033】[HAOI2015]树上染色 树形DP
[BZOJ4033][HAOI2015]树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染 ...
- [bzoj4033][HAOI2015]树上染色_树形dp
树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...
- bzoj4033(树上染色)
树上染色 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两 ...
- BZOJ4033: [HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3461 Solved: 1473[Submit][Stat ...
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- 洛谷 P3177 树上染色 解题报告
P3177 [HAOI2015]树上染色 题目描述 有一棵点数为\(N\)的树,树边有边权.给你一个在\(0\) ~ \(N\)之内的正整数\(K\),你要在这棵树中选择\(K\)个点,将其染成黑色, ...
- 【BZOJ】4033: [HAOI2015]树上染色 树上背包
[题目]#2124. 「HAOI2015」树上染色 [题意]给定n个点的带边权树,要求将k个点染成黑色,使得 [ 黑点的两两距离和+白点的两两距离和 ] 最大.n<=2000. [算法]树上背包 ...
随机推荐
- C#icon图标文件转Image
Icon icon = ICONHelper.GetFileIcon(filePath); MemoryStream mStream = new MemoryStream();//创建内存流 icon ...
- webServices学习三(概念详解)
WebService通过HTTP协议完成远程调用: (深入分析) WebService只采用HTTP POST方式传输数据,不使用GET方式; -- 握手,WSDL-get, 普通http post的 ...
- kuangbin带我飞QAQ DLX之一脸懵逼
1. hust 1017 DLX精确覆盖 模板题 勉强写了注释,但还是一脸懵逼,感觉插入方式明显有问题但又不知道哪里不对而且好像能得出正确结果真是奇了怪了 #include <iostream& ...
- webpack4配置react开发环境
webpack4大大提高了开发效率,简化了配置复杂度,作为一个大的版本更新,作为一个对开发效率执着的爱折腾的程序员,已经忍不住要尝尝鲜了 首先是cli和webpack的分离,开发webpack应用程序 ...
- 【linux配置】Linux同步网络时间
Linux同步网络时间 1.date '+%Y%M%D' 按照格式显示当前日期,结果如下: [root@LAMP ~]# date "+%Y-%m-%d %H:%M:%S" -- ...
- mysql8 navicat
先把root账户的加密规则改回去 ALTER USER 'root'@'localhost' IDENTIFIED BY 'password' PASSWORD EXPIRE NEVER; 然后使用新 ...
- 在centos 6.3系统下安装java、tomcat环境的方法与步骤(方法经过验证,可安装成功)
一.安装java1. 下载java二进制安装包 wget --no-cookies --no-check-certificate --header "Cookie: gpw_e24=http ...
- GIT → 05:Git命令行操作
5.1 打开命令行窗口 安装Git后,在资源管理器的空白处,单击鼠标右键打开窗口,点击 Git Bash Here ,打开Git命令行窗口,在窗口中可直接使用Linux命令操作: 5.2 初始化Git ...
- SpringCloud微服务实战一:Spring Cloud Eureka 服务发现与注册中心(高可用实列为两个注册中心)
微服务架构: 微服务架构的核心思想是,一个应用是由多个小的.相互独立的.微服务组成,这些服务运行在自己的进程中,开发和发布都没有依赖.不同服务通过一些轻量级交互机制来通信,例如 RPC.HTTP 等, ...
- 洛谷 P1004 方格取数 【多线程DP/四维DP/】
题目描述(https://www.luogu.org/problemnew/show/1004) 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0. ...