20191217HNOI 模拟赛 复活石
题目描述:



分析:
我也不知道我在干sm,但就是没写出来2333
枚举 i 的每个质因子 j ,复杂度为n^(3/2)
为什么我会认为是n^2啊2333
然后考虑 f ( j )对g ( i )做了多少贡献
这个值当然与x=i / j有关
对每个x的质因子分开考虑
那么设某个因子P的指数为A
那么对于中途sigma的某一位的值Ik,他们的因子P的指数为Ak
那么为了满足整除性,我们知道Ak是单调不上升的
那么就可以用组合数算了。。。
构造长度为K的不超过Ak的不下降序列的方案数相当于将Ak个有标号小球放入K个编了号的箱子中,箱子可空
差分一下就看出来了2333
那么方案数就为C(K+Ak-1,Ak)
对于x的总方案,就是所有质因子方案数相乘,我们设为W(x)
所以g ( i ) = sigma( j | i ) f ( j ) * W ( i / j )
其中W是可以O( n^(3/2) )预处理的
所以总复杂度为O( n^(3/2) )
此外题解说有一个神仙卷积法,考场上想过但是为什么不继续想啊
太菜了,复习复习。。。
( f * g )(n) = sigma ( j | i ) f ( j ) *g ( i / j )
我***考试中这式子都写在纸上了怎么还不会啊2333好菜啊2333
答案就是( f * I ) (n) ^ k,其中函数I中所有值都为1
快速卷卷起来不就好啦。。。
/*龙门粗口*/
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector> #define maxn 200005
#define INF 0x3f3f3f3f
#define MOD 1000000007 using namespace std; inline int getint()
{
int num=,flag=;char c;
while((c=getchar())<''||c>'')if(c=='-')flag=-;
while(c>=''&&c<='')num=num*+c-,c=getchar();
return num*flag;
} int n,K;
long long f[maxn];
long long g[maxn];
int pri[maxn],cnt,np[maxn];
long long fac[maxn],inv[maxn];
long long W[maxn]; inline long long C(int p,int q)
{return fac[p]*inv[q]%MOD*inv[p-q]%MOD;} inline void init()
{
for(int i=;i<maxn/;i++)
{
if(!np[i])pri[++cnt]=i;
for(int j=;j<=cnt&&i*pri[j]<maxn/;j++)
{
np[i*pri[j]]=;
if(i%pri[j]==)break;
}
}
fac[]=fac[]=inv[]=inv[]=;
for(int i=;i<maxn;i++)fac[i]=fac[i-]*i%MOD;
for(int i=;i<maxn;i++)inv[i]=inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=;i<maxn;i++)inv[i]=inv[i]*inv[i-]%MOD;
} int main()
{
int T=getint();
init();
while(T--)
{
memset(g,,sizeof g);
n=getint(),K=getint();
for(int i=;i<=n;i++)
{
int tmp=i;W[i]=;
for(int j=;j<=cnt&&pri[j]<=tmp;j++)
if(tmp%pri[j]==)
{
int cur=;
while(tmp%pri[j]==)tmp/=pri[j],cur++;
(W[i]*=C(K+cur-,cur))%=MOD;
}
if(tmp>)(W[i]*=K)%=MOD;
}
for(int i=;i<=n;i++)f[i]=getint();
for(int i=;i<=n;i++)for(int j=;j*j<=i;j++)
if(i%j==)
{
(g[i]+=f[j]*W[i/j])%=MOD;
if(j*j!=i)(g[i]+=f[i/j]*W[j])%=MOD;
}
for(int i=;i<=n;i++)printf("%lld%c",g[i],i==n?'\n':' ');
}
}

20191217HNOI 模拟赛 复活石的更多相关文章
- FJoi2017 1月20日模拟赛 恐狼后卫(口糊动规)
Problem 1 恐狼后卫(wolf.cpp/c/pas) [题目描述] 著名卡牌游戏<石炉传说>中有一张随从牌:恐狼后卫.恐狼后卫的能力是使得相邻随从的攻击力提高. 现在有n张恐狼后卫 ...
- 20180610模拟赛T1——脱离地牢
Description 在一个神秘的国度里,年轻的王子Paris与美丽的公主Helen在一起过着幸福的生活.他们都随身带有一块带磁性的阴阳魔法石,身居地狱的魔王Satan早就想着得到这两块石头了,只要 ...
- 冲刺$\mathfrak{CSP-S}$集训模拟赛总结
开坑.手懒并不想继续一场考试一篇文. 既没必要也没时间侧边栏的最新随笔题解反思相间也丑 而且最近越来越懒了竟然都不写题解了……开坑也是为了督促自己写题解. 并不想长篇大论.简要题解也得写啊QAQ. 目 ...
- NOIP模拟赛20161022
NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...
- NOI模拟赛 Day1
[考完试不想说话系列] 他们都会做呢QAQ 我毛线也不会呢QAQ 悲伤ING 考试问题: 1.感觉不是很清醒,有点困╯﹏╰ 2.为啥总不按照计划来!!! 3.脑洞在哪里 4.把模拟赛当作真正的比赛,紧 ...
- NOIP第7场模拟赛题解
NOIP模拟赛第7场题解: 题解见:http://www.cqoi.net:2012/JudgeOnline/problemset.php?page=13 题号为2221-2224. 1.car 边界 ...
- contesthunter暑假NOIP模拟赛第一场题解
contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...
- NOIP模拟赛 by hzwer
2015年10月04日NOIP模拟赛 by hzwer (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...
- 小奇模拟赛9.13 by hzwer
2015年9月13日NOIP模拟赛 by hzwer (这是小奇=> 小奇挖矿(explo) [题目背景] 小奇要开采一些矿物,它驾驶着一台带有钻头(初始能力值w)的飞船,按既定路线依次飞 ...
随机推荐
- CF1137 C. Museums Tour
CF1137 C. Museums Tour 一般来说的正常思路:看到有向图的第一思路都是缩点(但是要分析一波证明强联通分量中的个体可以拼凑成整体,一般都是边和点可以经过无数次然后贡献只算一次这种类型 ...
- P1919 FFT加速高精度乘法
P1919 FFT加速高精度乘法 传送门:https://www.luogu.org/problemnew/show/P1919 题意: 给出两个n位10进制整数x和y,你需要计算x*y. 题解: 对 ...
- .NET Core + docker入门
下载安装docker docker客户端,今天vpn小水管实在是受不了,于是找了国内的下载地址 配置docker加速器 参考博文Docker for windows10 配置阿里云镜像 docker入 ...
- Python_全局变量的定义
1.在my套件下新建一个关键字systemkey并进行脚本的编写:创建一个${var1}变量,并赋值为aaaaaaaaaa Set Global Variable ${var1} ...
- Java8 LocalDate计算两个日期的间隔天数
Java8新增了java.time包,提供了很多新封装好的类,使我们可以摆脱原先使用java.util.Time以及java.util.Calendar带来的复杂. 其中LocalDate正是本文中使 ...
- 洛谷$P3645\ [APIO2015]$雅加达的摩天楼 最短路
正解:最短路 解题报告: 传送门$QwQ$ 考虑暴力连边,发现最多有$n^2$条边.于是考虑分块 对于长度$p_i$小于等于$\sqrt(n)$的边,建立子图$d=p_i$.说下关于子图$d$的定义? ...
- $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数
正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...
- MySQL基础篇(04):存储过程和视图,用法和特性详解
本文源码:GitHub·点这里 || GitEE·点这里 一.存储过程 1.概念简介 存储程序是被存储在服务器中的组合SQL语句,经编译创建并保存在数据库中,用户可通过存储过程的名字调用执行.存储过程 ...
- Flink系列之Time和WaterMark
当数据进入Flink的时候,数据需要带入相应的时间,根据相应的时间进行处理. 让咱们想象一个场景,有一个队列,分别带着指定的时间,那么处理的时候,需要根据相应的时间进行处理,比如:统计最近五分钟的访问 ...
- C语言之运算符和表达式
运算符优先级: 求余运算用法: 声明变量的名字和类型: 变量的类型决定占用内存空间的大小.数据的存储形式,合法的表数范围.可参与的运算种类.变量名标识了内存中的一个存储单元. 自动类型转换: 运算符和 ...