声明:每人都有自己的理解,动手实践才能对细节更加理解!

参考:https://www.cnblogs.com/darkknightzh/p/10043864.html

一.算法理解

  此处省略一万字。。。。。。。。。。。。。。。。。。

二.训练及源码理解

  首先配置:

  在./lib/utils文件下....运行

  python setup.py build_ext --inplace

  python setup.py build_ext install

  Go to ./lib/utils文件夹下...运行
  python setup.py build_ext --inplace
  1. 数据介绍:检测图片当中的手写体区域,图片不多自己标注了大约800张,但是图片中的手写体区域大约几千个,之前训练CTPN自己制作的数据集。
  2. 数据格式:分为3个文件夹,首先是JPEGImages(存放的训练图片,命名格式:000000.png,000001.png...等),然后是ImageSets(里面分Layout(包括test.txt,train.txt,trainval.txt,val.txt,存放训练测试验证的文件名称)和Main即可),另外Annotations(存放的是标注数据,xml格式的,之前数据标注在txt里面,自己转为xml标标准格式存储,或者用labelImg-master(Windows)标注,直接生成xml即可),至此数据准备完毕。。。。。。。
  3. 模型准备:默认前段卷积网络VGG16,vgg16需要自己下载,存放在路径.data/imagenet_weights/vgg16.ckpt
  4. 训练:train.py,主要流程及核心代码如下
    net.create_architecture(sess, "TRAIN", self.imdb.num_classes, tag='default')
    rois, cls_prob, bbox_pred = self.build_network(sess, training)  rois为roi pooling层得到的框,cls_prob分类得分,bbox_pred框预测
    net = self.build_head(is_training)  vgg16卷积层提取特征,图片缩小16倍
    rpn_cls_prob, rpn_bbox_pred, rpn_cls_score, rpn_cls_score_reshape = self.build_rpn(net, is_training, initializer)  rpn网络(anchor生成与原图对应坐标),分类得分,候选框偏移等
    rois = self.build_proposals(is_training, rpn_cls_prob, rpn_bbox_pred, rpn_cls_score)  通过超出图片区域,nms等筛选出合适的rois
    cls_score, cls_prob, bbox_pred = self.build_predictions(net, rois, is_training, initializer, initializer_bbox) roi pooling,全连接预测等
  5. 训练自己数据修改的地方,手写体识别就设置了一个类别:chinese,在源码pascal_voc.py中修改self._classes=('__background__', 'chinese')可以按照自己的类别进行修改,注意图片后缀格式,然后修改各种路径就可以训练了。
  6. 测试:迭代了10000次,用demo代码进行测试,数据较少,训练次数也不多,效果还可以,注意修改CLASSES = ('__background__', 'chinese') 预测结果如图所示:
  7.  

Faster Rcnn训练自己的数据集过程大白话记录的更多相关文章

  1. CTPN训练自己的数据集过程大白话记录

    一.算法理解 此处省略1万字.............. 二.训练及源码理解 配置以下3步: 在utils文件夹和utils\bbox文件夹下创建__init__.py文件 在utils\bbox文件 ...

  2. faster rcnn训练自己的数据集

    采用Pascal VOC数据集的组织结构,来构建自己的数据集,这种方法是faster rcnn最便捷的训练方式

  3. 如何才能将Faster R-CNN训练起来?

    如何才能将Faster R-CNN训练起来? 首先进入 Faster RCNN 的官网啦,即:https://github.com/rbgirshick/py-faster-rcnn#installa ...

  4. caffe学习三:使用Faster RCNN训练自己的数据

    本文假设你已经完成了安装,并可以运行demo.py 不会安装且用PASCAL VOC数据集的请看另来两篇博客. caffe学习一:ubuntu16.04下跑Faster R-CNN demo (基于c ...

  5. python3 + Tensorflow + Faster R-CNN训练自己的数据

    之前实现过faster rcnn, 但是因为各种原因,有需要实现一次,而且发现许多博客都不全面.现在发现了一个比较全面的博客.自己根据这篇博客实现的也比较顺利.在此记录一下(照搬). 原博客:http ...

  6. Fast RCNN 训练自己的数据集(3训练和检测)

    转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ https://github.com/YihangLou/fas ...

  7. faster rcnn训练详解

    http://blog.csdn.net/zy1034092330/article/details/62044941 py-faster-rcnn训练自己的数据:流程很详细并附代码 https://h ...

  8. Fast R-CNN训练自己的数据集时遇到的报错及解决方案

    最近使用Fast R-CNN训练了实验室的数据集,期间遇到一些报错,主要还是在配置环境上比较麻烦,但可以根据提示在网上找到解决这些错误的办法.这里我只记录一些难改的报错,以后再遇见这些时希望能尽快解决 ...

  9. faster rcnn训练过程讲解

    http://blog.csdn.net/u014696921/article/details/60321425

随机推荐

  1. 【转载】Windows平台分布式架构实践 - 负载均衡

    概述 最近.NET的世界开始闹腾了,微软官方终于加入到了对.NET跨平台的支持,并且在不久的将来,我们在VS里面写的代码可能就可以通过Mono直接在Linux和Mac上运行.那么大家(开发者和企业)为 ...

  2. PyTorch官方中文文档:torch.optim 优化器参数

    内容预览: step(closure) 进行单次优化 (参数更新). 参数: closure (callable) –...~ 参数: params (iterable) – 待优化参数的iterab ...

  3. Python--day23--面向对象思想求正方形面积

  4. java DOM 操作xml

    1 代码如下: package dom.pasing; import java.io.IOException; import java.io.StringWriter; import javax.xm ...

  5. java 事件监听机制组成

    事件源(组件) 事件(Event) 监听器(Listener) 事件处理(引发事件后处理方式) 事件监听机制流程图 务必记牢: 确定事件源(容器或组件) 通过事件源对象的addXXXListener( ...

  6. 1134 最长上升子序列 (序列型 DP)

    思路: 由于一般的动态规划时间复杂度是O(n^2)(哈哈哈哈 第一次用的就是这个!)用在这里由于n最大为50000 所以会超时 到这里我们可以用一个数组来动态维护这个最长上升的子序列,将你要输入的子序 ...

  7. Android studio 使用git仓库记录

    studio 绑定git settings --> verson control -->git 在项目文件目录右击打开git bash here操作界面 查看git项目安装位置 找到id_ ...

  8. HFile v2 v3文件结构

    http://blog.csdn.net/map_lixiupeng/article/details/40861791 http://blog.csdn.net/map_lixiupeng/artic ...

  9. 异步加载css 和 谷歌浏览器各实用小工具介绍

    异步加载css资源 加开页面首屏显示速度使我们前端一直在追求的目标,而css资源在这些优化中同样也是不可或缺的. 一个网站可能有一部分css资源是必须的,他需要在页面渲染完之前就被加载完,并和html ...

  10. mac 访达修改所有文件夹默认排序方式

    先说个误区,下图只能改变当前目录的排序方式 修改所有目录的排序方式需要在顶部的“显示” 中修改