CF930E Coins Exhibition
题意:平面上一共有k个硬币(k<=1e9),给你n个区间这些区间中至少有一个硬币反面朝上,m个区间中至少有一个硬币正面朝上。问有多少种硬币放置方案?n,m<=100005.
标程:
#include<bits/stdc++.h>
using namespace std;
const int mod=1e9+;
const int N=;
typedef long long ll;
struct node{int l,r;}a[N],b[N];
int k,n,m,p[N],rg[N][],g[],f[N][],t;
int ksm(int x,int y)
{
int res=;
while (y){if (y&) res=(ll)res*x%mod; x=(ll)x*x%mod;y>>=;}
return res;
}
int main()
{
scanf("%d%d%d",&k,&n,&m);
for (int i=;i<=n;i++) scanf("%d%d",&a[i].l,&a[i].r),p[++t]=--a[i].l,p[++t]=a[i].r;
for (int i=;i<=m;i++) scanf("%d%d",&b[i].l,&b[i].r),p[++t]=--b[i].l,p[++t]=b[i].r;
p[++t]=;p[++t]=k;
sort(p+,p+t+);t=unique(p+,p+t+)-p-;
for (int i=;i<=t;i++) rg[i][]=rg[i][]=t+;
for (int i=;i<=n;i++)
{
a[i].l=lower_bound(p+,p+t+,a[i].l)-p;
a[i].r=lower_bound(p+,p+t+,a[i].r)-p;
rg[a[i].l][]=min(rg[a[i].l][],a[i].r);
}
for (int i=;i<=m;i++)
{
b[i].l=lower_bound(p+,p+t+,b[i].l)-p;
b[i].r=lower_bound(p+,p+t+,b[i].r)-p;
rg[b[i].l][]=min(rg[b[i].l][],b[i].r);
}
for (int i=t-;i>=;i--) rg[i][]=min(rg[i][],rg[i+][]),rg[i][]=min(rg[i][],rg[i+][]);
f[t][]=f[t][]=f[t][]=;
for (int i=t-;i>=;i--)
{
g[]=(ll)f[i+][]*(ksm(,p[i+]-p[i])-+mod)%mod;//这一段有0有1
for (int j=;j<=;j++) g[j]=((ll)f[i+][j]-f[rg[i][j]][j]+mod)%mod;//g[1/0]表示这一段全0/1且符合限制的方案数。
f[i][]=((ll)f[i+][]+g[]+g[])%mod;
f[i][]=((ll)f[i+][]+g[]+g[])%mod;
f[i][]=((ll)g[]+g[]+g[])%mod;
}
printf("%d\n",f[][]);
return ;
}
易错点:1.离散化数组的大小需要注意,此题应该开4倍。
2.注意左端点要-1,因而统计的时候都是左开右闭的区间。
题解:前缀和优化dp
朴素思路:将区间按照左端点排序,dp[i:走到第i个格子][j:满足前j个0区间][k:满足前k个1区间]。状态数太大。
可以按照端点离散化,之后就可以按照关键点跳。官方题解:dp0[i][l1]表示最后一个位置为0,当前统计完前i个关键点,l1表示上一个1的位置在哪个关键点区间,dp1同设。状态数还是太大。
继续优化:中间部分按照全1,全0,有1有0讨论。后面两维可以合并掉。f[i:走到第i个关键点,后面的所有关键点都满足其开头限制][0/1:pos[i]~pos[i+1]的区间包含0/1(最后一个0/1在i区间),2:全集]的方案数。f[i][0/1]是最后一个0/1在i~t区间的方案后缀和。f[i][2]是当前的最后一段有0有1的方案数全集(不是后缀和)。
对于限制的处理,对于有相同左端点的区间,取右端点min。对于有包含关系的区间,两个限制都取较小的一个右端点,保证右端点单调,可以直接避免最靠前的一个01位置的不合法情况。
O((n+m)logk)。
CF930E Coins Exhibition的更多相关文章
- [CF930E]/[CF944G]Coins Exhibition
[CF930E]/[CF944G]Coins Exhibition 题目地址: CF930E/CF944G 博客地址: [CF930E]/[CF944G]Coins Exhibition - skyl ...
- 【CF944G】Coins Exhibition DP+队列
[CF944G]Coins Exhibition 题意:Jack去年参加了一个珍稀硬币的展览会.Jack记得一共有 $k$ 枚硬币,这些硬币排成一行,从左到右标号为 $1$ 到 $k$ ,每枚硬币是正 ...
- [LeetCode] Arranging Coins 排列硬币
You have a total of n coins that you want to form in a staircase shape, where every k-th row must ha ...
- ACM: Gym 101047M Removing coins in Kem Kadrãn - 暴力
Gym 101047M Removing coins in Kem Kadrãn Time Limit:2000MS Memory Limit:65536KB 64bit IO Fo ...
- Codeforces 2016 ACM Amman Collegiate Programming Contest A. Coins(动态规划/01背包变形)
传送门 Description Hasan and Bahosain want to buy a new video game, they want to share the expenses. Ha ...
- csuoj 1119: Collecting Coins
http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1119 1119: Collecting Coins Time Limit: 3 Sec Memo ...
- Coins
Description Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. One day Hi ...
- hdu 1398 Square Coins (母函数)
Square Coins Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Tota ...
- (混合背包 多重背包+完全背包)The Fewest Coins (poj 3260)
http://poj.org/problem?id=3260 Description Farmer John has gone to town to buy some farm supplies. ...
随机推荐
- 防止DDOS攻击有效方法:隐藏服务器真实IP
如今,网站服务器的安全受到越来越多的重视,但是难免会遇到黑客使用DDoS攻击网站,为了网站的安全通常都会做好防御,其中防止DDoS攻击有效方法:隐藏服务器真实IP ,该技术能够有效地保护网站的安全. ...
- ArcGis拓扑——规则、概念与要点
在地理数据库中,拓扑是定义点要素.线要素以及面要素共享重叠几何的方式的排列布置.例如,街道中心线与人口普查区块共享公共几何,相邻的土壤面共享公共边界. 处理拓扑不仅仅是提供一个数据存储机制.在 Arc ...
- Ansible角色
Ansible角色介绍 官方地址: https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html 角色目录 ...
- C++11 auto 与 右值
auto: auto T = xxx; // 产生一个变量,自动推导变量类型. 存在变量拷贝的消耗.auto& T = xxx; // 产生一个变量的引用,自动推导变量类型.减少拷贝的消耗. ...
- Superset安装出错 sqlalchemy.exc.InvalidRequestError: Can't determine which FROM clause to join from, ...
$ superset db upgrade ... Traceback (most recent call last): File "/home/jhadmin/.pyenv/version ...
- 树形dp换根,求切断任意边形成的两个子树的直径——hdu6686
换根dp就是先任取一点为根,预处理出一些信息,然后在第二次dfs过程中进行状态的转移处理 本题难点在于任意割断一条边,求出剩下两棵子树的直径: 设割断的边为(u,v),设down[v]为以v为根的子树 ...
- tesserocr与pytesseract模块的使用
1.tesserocr的使用 #从文件识别图像字符 In [7]: tesserocr.file_to_text('image.png') Out[7]: 'Python3WebSpider\n\n' ...
- Oozie安装
Oozie的安装与部署 1.解压Oozie $ tar -zxf /opt/softwares/oozie-4.0.0-cdh5.3.6.tar.gz -C /opt/modules/cdh/ 2.H ...
- BZOJ 3626: [LNOI2014]LCA(树剖+差分+线段树)
传送门 解题思路 比较有意思的一道题.首先要把求\(\sum\limits_{i=l}^r dep[lca(i,z)]\)这个公式变一下.就是考虑每一个点的贡献,做出贡献的点一定在\(z\)到根节点的 ...
- (转)Java NIO框架Mina、Netty、Grizzly介绍与对比
转:http://blog.csdn.net/cankykong1/article/details/19937027 Mina: Mina(Multipurpose Infrastructure fo ...