Survival Coxph log-rank
I'm using the survival package in R to analyze clinical data. I am analyzing two different groups of patients, when I calculate survdiff in order to compare the curves, I got p= 0.135, but when I adjust the model using coxph and different covariates, let say clinical cancer stages, , I got an overall logrank score of 0.0005793 for 5 covariates. My question is, could I use this late logrank p-value to say that adjusting the model with more covariates the difference between the curves is signifficative?
here is the data
survdiff(formula = my.surv ~ final_table$G)
n=56, 14 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
final_table$G=1 4 2 1.43 0.2294 0.247
final_table$G=2 52 24 24.57 0.0133 0.247
Chisq= 0.2 on 1 degrees of freedom, **p= 0.619**
And this is the coxph results
coxph(formula = Surv(final_table$Time_surv, final_table$Survival) ~ final_table$G + final_table$ST)
n= 56, number of events= 26
(14 observations deleted due to missingness)
coef exp(coef) se(coef) z Pr(>|z|)
final_table$G2 2.094e-01 1.233e+00 7.532e-01 0.278 0.781
final_table$STII 1.883e+01 1.501e+08 5.739e+03 0.003 0.997
final_table$STIII 1.998e+01 4.773e+08 5.739e+03 0.003 0.997
final_table$STIV 2.089e+01 1.186e+09 5.739e+03 0.004 0.997
exp(coef) exp(-coef) lower .95 upper .95
final_table$G2 1.233e+00 8.111e-01 0.2817 5.396
final_table$STII 1.501e+08 6.662e-09 0.0000 Inf
final_table$STIII 4.773e+08 2.095e-09 0.0000 Inf
final_table$STIV 1.186e+09 8.430e-10 0.0000 Inf
Concordance= 0.74 (se = 0.057 )
Rsquare= 0.37 (max possible= 0.957 )
Likelihood ratio test= 25.86 on 4 df, p=3.381e-05
Wald test = 4.02 on 4 df, p=0.4033
Score (logrank) test = 19.67 on 4 df, **p=0.0005793**
Thanks
Thanks to comments I did this analysis, survdiff with roup and stage
survdiff(formula = Surv(final_table$Time_surv, final_table$Survival) ~
final_table$G + final_table$ST)
n=56, 14 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
final_table$G=1, final_table$ST=III 3 2 1.149 0.630 0.668
final_table$G=1, final_table$ST=IV 1 0 0.279 0.279 0.285
final_table$G=2, final_table$ST=I 15 0 8.715 8.715 13.547
final_table$G=2, final_table$ST=II 2 1 1.816 0.367 0.402
final_table$G=2, final_table$ST=III 30 19 13.067 2.693 5.540
final_table$G=2, final_table$ST=IV 5 4 0.973 9.413 9.935
Chisq= 23.2 on 5 degrees of freedom, p= 0.000313
So the final value is totally significant, but now I got 6 curves, more or less this is what I want, how the group and the stage is affecting the survival. What do you think?
migrated from stackoverflow.com Apr 19 '12 at 18:01
This question came from our site for professional and enthusiast programmers.
Without actual output it is difficult to tell, but generally an "overall logrank score" will test the null hypothesis that all of the coefficients are 0. Therefore a significant result could be due to one or more of your covariates being related to survival while your 2 groups are still identical (or they could be different).
It is better to fit the model with your group variable (and the covariates) and fit another model without your group variable (but still with the same covariates) and compare the 2 fits.
- 1I've never heard of an "overall logrank score" coming from a Cox model (but when you have a single categorical covariate in your Cox model, than the score test from the Cox model and the logrank test are equivalent). I don't use R so I'm just speculating here, but couldn't it be just a "LR test" that the OP incorrectly interpreted as "LogRank" instead of "Likelihood Ratio"? – boscovich Apr 19 '12 at 18:46
- Anyway, apart from the name of the test, I agree with what you say. – boscovich Apr 19 '12 at 18:55
- 1@andrea, you are probably correct, I was focusing on the "Overall" part rather than thinking logrank vs liklihood ratio. Either way I would not interpret it the way the original poster wants to without a lot more information. – Greg Snow Apr 19 '12 at 18:55
- Sorry, i forgot to add the data probably is mor clear now, I want to know if adjusting using other covariates I can say that my logrank score test coming from coxph, p=0.0005793 could replace the former survdiff logrank p= 0.619. Thanks and sorry is you find the question too simple, I'm totally newbie in survival analysis – ToniG Apr 20 '12 at 9:06
- It is like I said, that is an overall score that says that at least one of the predictors is important (in this case it is the one that you are adjusting for). The test of G given ST (adjusting for ST) has the p-value 0.781. So you have no evidence that G predicts survival. – Greg Snow Apr 21 '12 at 17:27
Survival Coxph log-rank的更多相关文章
- DNA甲基化与癌症、泛癌早筛 | DNA methylation and pan-cancer
虽然我们现在完全没有甲基化的数据,但还是可以了解一下. 什么是DNA甲基化,与组蛋白修饰有什么联系? DNA Methylation and Its Basic Function 表观的定义就是DNA ...
- R语言与医学统计图形-【33】生存曲线、森林图、曼哈顿图
1.生存曲线 基础包survival+扩展包survminer. survival包内置肺癌数据集lung. library(survival) library(survminer) str(lung ...
- 齐夫定律, Zipf's law,Zipfian distribution
齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在 ...
- OR,RR,HR 临床分析应用中的差别 对照组暴露比值b/d
1.相对危险度(relative risk,RR).指暴露于某因素发生某事件的风险,即A/(A+B),除以未暴露人群发生的该事件的风险,即C/(C+D),所得的比值,即RR=[A/(A+B)]/[C/ ...
- Luogu P1117 [NOI2016]优秀的拆分
题目链接 \(Click\) \(Here\) 这题质量不错,就是暴力分有点足\(hhhhhhhh\),整整有\(95\)分. (搞得我写完暴力都不想写正解直接理解思路之后就直接水过去了\(QwQ\) ...
- 统计学中RR OR AR HR的区别
一.相对危险度(RR)——队列研究中分析暴露因素与发病的关联程度 队列研究是选择暴露及未暴露于某一因素的两组人群,追踪其各自的发病结局,比较两组发病结局的差异,从而判定暴露因素与疾病有无关联及关联大小 ...
- 示例 - 25行代码等价实现 - 借助Nodejs在服务端使用jQuery采集17173游戏排行信息
今天在园子里看到一篇文章: 借助Nodejs在服务端使用jQuery采集17173游戏排行信息 感觉用SS来实现相同功能更加简洁, 于是写了一下, 发现25行代码就搞定了 (包括自动翻页), 于是跟大 ...
- go 学习笔记之有意思的变量和不安分的常量
首先希望学习 Go 语言的爱好者至少拥有其他语言的编程经验,如果是完全零基础的小白用户,本教程可能并不适合阅读或尝试阅读看看,系列笔记的目标是站在其他语言的角度学习新的语言,理解 Go 语言,进而写出 ...
- survival analysis 生存分析与R 语言示例 入门篇
原创博客,未经允许,不得转载. 生存分析,survival analysis,顾名思义是用来研究个体的存活概率与时间的关系.例如研究病人感染了病毒后,多长时间会死亡:工作的机器多长时间会发生崩溃等. ...
随机推荐
- socat 广播以及多播
官方文档有一个关于组播,多播的例子挺不错,记录下 多播客户端以及服务器 注意地址修改为自己的网络 server socat UDP4-RECVFROM:6666,ip-add-membership=2 ...
- JMeter分布式部署的大致步骤以及误区解释
master和slave机要在同一网段内,才能做分布式(Jmeter要配环境变量,这样不用手动起server) 分布式不成功,解决方案: 1.master端和slave端要ping通 2.ping通后 ...
- 实现JMS规范的ActiveMQ
ActiveMQ是Apache软件基金会的开源产品,支持AMQP协议.MQTT协议(和XMPP协议作用类似).Openwire协议和Stomp协议等多种消息协议.并且ActiveMQ完整支持JMS A ...
- gphoto2
连上usb线,系统会跳出detect到camera的提示,这里一定要选择“unmount”,否则会面的命令执行会有问题 hjs@ubuntu:~$ gphoto2 --auto-detect Mode ...
- JUC集合之 ArrayBlockingQueue
ArrayBlockingQueue介绍 ArrayBlockingQueue是数组实现的线程安全的有界的阻塞队列. 线程安全是指,ArrayBlockingQueue内部通过"互斥锁&qu ...
- Spring 相关注解
spring 2.5 中除了提供 @Component 注释外,还定义了几个拥有特殊语义的注释,它们分别是:@Repository.@Service 和 @Controller. 在目前的 Sprin ...
- VS2017增加数据库连接串
新装VS2017后,按照三石提供的MVC入门教程,创建MVC应用后,能生成数据库文件(在APP_DATA目录),但无法创建连接,服务器路径一直不正确. 解决方法: 1.重新打开VS2017安装界面,选 ...
- java 环境变量与安装目录
JDK安装完成后有如下文件夹 bin:存放JDK的各种工具命令,如javac.java等命令. jre:运行java程序所必须的JRE环境 lib:JDK工具命令的实际执行程序,如tools.jar中 ...
- JMeter--详解JMeter配置元件
JMeter配置元件可以用来初始化默认值和变量,以便后续采样器使用.将在其作用域的初始化阶段处理. CSV Data Set Config:被用来从文件中读取数据,并将它们拆分后存储到变量中,适合处理 ...
- mySQL教程 第1章 数据库设计
E-R设计 很多同学在学SQL语句时,觉得非常困难,那是因为你在学一个你根本不了解的数据库,数据库中的表不是你设计的,表与表之间的关系你不明白.因此在学SQL语句之前,先介绍一下数据库设计. 下面举例 ...