Survival Coxph log-rank
I'm using the survival package in R to analyze clinical data. I am analyzing two different groups of patients, when I calculate survdiff in order to compare the curves, I got p= 0.135, but when I adjust the model using coxph and different covariates, let say clinical cancer stages, , I got an overall logrank score of 0.0005793 for 5 covariates. My question is, could I use this late logrank p-value to say that adjusting the model with more covariates the difference between the curves is signifficative?
here is the data
survdiff(formula = my.surv ~ final_table$G)
n=56, 14 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
final_table$G=1 4 2 1.43 0.2294 0.247
final_table$G=2 52 24 24.57 0.0133 0.247
Chisq= 0.2 on 1 degrees of freedom, **p= 0.619**
And this is the coxph results
coxph(formula = Surv(final_table$Time_surv, final_table$Survival) ~ final_table$G + final_table$ST)
n= 56, number of events= 26
(14 observations deleted due to missingness)
coef exp(coef) se(coef) z Pr(>|z|)
final_table$G2 2.094e-01 1.233e+00 7.532e-01 0.278 0.781
final_table$STII 1.883e+01 1.501e+08 5.739e+03 0.003 0.997
final_table$STIII 1.998e+01 4.773e+08 5.739e+03 0.003 0.997
final_table$STIV 2.089e+01 1.186e+09 5.739e+03 0.004 0.997
exp(coef) exp(-coef) lower .95 upper .95
final_table$G2 1.233e+00 8.111e-01 0.2817 5.396
final_table$STII 1.501e+08 6.662e-09 0.0000 Inf
final_table$STIII 4.773e+08 2.095e-09 0.0000 Inf
final_table$STIV 1.186e+09 8.430e-10 0.0000 Inf
Concordance= 0.74 (se = 0.057 )
Rsquare= 0.37 (max possible= 0.957 )
Likelihood ratio test= 25.86 on 4 df, p=3.381e-05
Wald test = 4.02 on 4 df, p=0.4033
Score (logrank) test = 19.67 on 4 df, **p=0.0005793**
Thanks
Thanks to comments I did this analysis, survdiff with roup and stage
survdiff(formula = Surv(final_table$Time_surv, final_table$Survival) ~
final_table$G + final_table$ST)
n=56, 14 observations deleted due to missingness.
N Observed Expected (O-E)^2/E (O-E)^2/V
final_table$G=1, final_table$ST=III 3 2 1.149 0.630 0.668
final_table$G=1, final_table$ST=IV 1 0 0.279 0.279 0.285
final_table$G=2, final_table$ST=I 15 0 8.715 8.715 13.547
final_table$G=2, final_table$ST=II 2 1 1.816 0.367 0.402
final_table$G=2, final_table$ST=III 30 19 13.067 2.693 5.540
final_table$G=2, final_table$ST=IV 5 4 0.973 9.413 9.935
Chisq= 23.2 on 5 degrees of freedom, p= 0.000313
So the final value is totally significant, but now I got 6 curves, more or less this is what I want, how the group and the stage is affecting the survival. What do you think?
migrated from stackoverflow.com Apr 19 '12 at 18:01
This question came from our site for professional and enthusiast programmers.
Without actual output it is difficult to tell, but generally an "overall logrank score" will test the null hypothesis that all of the coefficients are 0. Therefore a significant result could be due to one or more of your covariates being related to survival while your 2 groups are still identical (or they could be different).
It is better to fit the model with your group variable (and the covariates) and fit another model without your group variable (but still with the same covariates) and compare the 2 fits.
- 1I've never heard of an "overall logrank score" coming from a Cox model (but when you have a single categorical covariate in your Cox model, than the score test from the Cox model and the logrank test are equivalent). I don't use R so I'm just speculating here, but couldn't it be just a "LR test" that the OP incorrectly interpreted as "LogRank" instead of "Likelihood Ratio"? – boscovich Apr 19 '12 at 18:46
- Anyway, apart from the name of the test, I agree with what you say. – boscovich Apr 19 '12 at 18:55
- 1@andrea, you are probably correct, I was focusing on the "Overall" part rather than thinking logrank vs liklihood ratio. Either way I would not interpret it the way the original poster wants to without a lot more information. – Greg Snow Apr 19 '12 at 18:55
- Sorry, i forgot to add the data probably is mor clear now, I want to know if adjusting using other covariates I can say that my logrank score test coming from coxph, p=0.0005793 could replace the former survdiff logrank p= 0.619. Thanks and sorry is you find the question too simple, I'm totally newbie in survival analysis – ToniG Apr 20 '12 at 9:06
- It is like I said, that is an overall score that says that at least one of the predictors is important (in this case it is the one that you are adjusting for). The test of G given ST (adjusting for ST) has the p-value 0.781. So you have no evidence that G predicts survival. – Greg Snow Apr 21 '12 at 17:27
Survival Coxph log-rank的更多相关文章
- DNA甲基化与癌症、泛癌早筛 | DNA methylation and pan-cancer
虽然我们现在完全没有甲基化的数据,但还是可以了解一下. 什么是DNA甲基化,与组蛋白修饰有什么联系? DNA Methylation and Its Basic Function 表观的定义就是DNA ...
- R语言与医学统计图形-【33】生存曲线、森林图、曼哈顿图
1.生存曲线 基础包survival+扩展包survminer. survival包内置肺癌数据集lung. library(survival) library(survminer) str(lung ...
- 齐夫定律, Zipf's law,Zipfian distribution
齐夫定律(英语:Zipf's law,IPA英语发音:/ˈzɪf/)是由哈佛大学的语言学家乔治·金斯利·齐夫(George Kingsley Zipf)于1949年发表的实验定律. 它可以表述为: 在 ...
- OR,RR,HR 临床分析应用中的差别 对照组暴露比值b/d
1.相对危险度(relative risk,RR).指暴露于某因素发生某事件的风险,即A/(A+B),除以未暴露人群发生的该事件的风险,即C/(C+D),所得的比值,即RR=[A/(A+B)]/[C/ ...
- Luogu P1117 [NOI2016]优秀的拆分
题目链接 \(Click\) \(Here\) 这题质量不错,就是暴力分有点足\(hhhhhhhh\),整整有\(95\)分. (搞得我写完暴力都不想写正解直接理解思路之后就直接水过去了\(QwQ\) ...
- 统计学中RR OR AR HR的区别
一.相对危险度(RR)——队列研究中分析暴露因素与发病的关联程度 队列研究是选择暴露及未暴露于某一因素的两组人群,追踪其各自的发病结局,比较两组发病结局的差异,从而判定暴露因素与疾病有无关联及关联大小 ...
- 示例 - 25行代码等价实现 - 借助Nodejs在服务端使用jQuery采集17173游戏排行信息
今天在园子里看到一篇文章: 借助Nodejs在服务端使用jQuery采集17173游戏排行信息 感觉用SS来实现相同功能更加简洁, 于是写了一下, 发现25行代码就搞定了 (包括自动翻页), 于是跟大 ...
- go 学习笔记之有意思的变量和不安分的常量
首先希望学习 Go 语言的爱好者至少拥有其他语言的编程经验,如果是完全零基础的小白用户,本教程可能并不适合阅读或尝试阅读看看,系列笔记的目标是站在其他语言的角度学习新的语言,理解 Go 语言,进而写出 ...
- survival analysis 生存分析与R 语言示例 入门篇
原创博客,未经允许,不得转载. 生存分析,survival analysis,顾名思义是用来研究个体的存活概率与时间的关系.例如研究病人感染了病毒后,多长时间会死亡:工作的机器多长时间会发生崩溃等. ...
随机推荐
- Docker使用rexray做跨主机存储
Rex-Ray 是一个优秀的 Docker volume driver,不过只有最新版docker才支持. Rex-Ray 以 standalone 进程的方式运行在 Docker 主机上,安装方法很 ...
- 初识Tarjan算法
#include<bits/stdc++.h> using namespace std; ; ;//强连通分量的个数 int stk[maxn];//暂时存放遍历过的点,在遇到low[x] ...
- 结构体内的函数与bfs的情景变量
关于结构体内的函数,太难的尚且不会用,下面是一个简单一点的结构体内函数的代码 定义这样一个结构体函数之后就能像如下这样使用了 以上为结构体内的简单函数,下面重点来了,关于bfs找最短路由于需要避免走回 ...
- 线程池、及使用场景、线程安全封装、ConcurrentHashMap应用场景
https://blog.csdn.net/sinbadfreedom/article/details/80467253 :1.HashMap与ConcurrentHashMap的区别与应用场景 h ...
- 【java规则引擎】《Drools7.0.0.Final规则引擎教程》第4章 4.3 定时器
定时器 规则用基于 interval(间隔)和cron的定时器(timer),替代了被标注过时的duration 属性.timer属性的使用示例: timer ( int: <initial d ...
- POJ2182 Lost Cows
题意 Language:Default Lost Cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13448 Accep ...
- 类名.fromObject(obj)静态方法
- JSON与JAVA数据的转换-----从3,23到现在5.25才过去2个月,感觉时间过得那么漫长
从3月23号去报到,期间经历了清明节,毕业论文答辩,从万达搬到东兴,五一节,毕业照,从东兴的一边搬到另外一个房间中去 2个月的时间过得如此的快啊!白驹过隙! 不要着急,不要和别人比,小龙哥写过3年代码 ...
- day10 python学习 函数的嵌套命名空间作用域 三元运算 位置参数 默认参数 动态参数
1.三元运算 #1.三元运算 利用已下方法就可以实现一步运算返回a b中大的值 def my_max(a,b): c=0 a=int(input('请输入')) b=int(input('请输入')) ...
- hasura graphql-engine v1.0.0-alpha25 的几个方便功能
hasura graphql-engine 是一个很不错的graphql 引擎,但是我们的数据模型经常可能会有变动, 但是以前的版本对于这些的处理,官方的方式是删除元数据,重启server,都不是很好 ...