"""
执行lda2vec.ipnb中的代码
模型LDA
功能:训练好后模型数据的可视化
""" from lda2vec import preprocess, Corpus
import matplotlib.pyplot as plt
import numpy as np
# %matplotlib inline
import pyLDAvis
try:
import seaborn
except:
pass
# 加载训练好的主题-文档模型,这里是查看数据使用。这里需要搞清楚数据的形式,还要去回看这个文件是怎么构成的
npz = np.load(open('D:/my_AI/lda2vec-master/examples/twenty_newsgroups/lda2vec/topics.pyldavis.npz', 'rb'))
# 数据
dat = {k: v for (k, v) in npz.iteritems()}
# 词汇表变成list
dat['vocab'] = dat['vocab'].tolist() #####################################
## 主题-词汇
#####################################
# 主题个数为10
top_n = 10
# 主题对应10个最相关的词
topic_to_topwords = {}
for j, topic_to_word in enumerate(dat['topic_term_dists']):
top = np.argsort(topic_to_word)[::-1][:top_n] # 概率从大到小的下标索引值
msg = 'Topic %i ' % j
# 通过list的下标获取关键词
top_words = [dat['vocab'][i].strip()[:35] for i in top]
# 数据拼接
msg += ' '.join(top_words)
print(msg)
# 将数据保存到字典里面
topic_to_topwords[j] = top_words import warnings
warnings.filterwarnings('ignore')
prepared_data = pyLDAvis.prepare(dat['topic_term_dists'], dat['doc_topic_dists'],
dat['doc_lengths'] * 1.0, dat['vocab'], dat['term_frequency'] * 1.0, mds='tsne') from sklearn.datasets import fetch_20newsgroups
remove=('headers', 'footers', 'quotes')
texts = fetch_20newsgroups(subset='train', remove=remove).data ##############################################
## 选取一篇文章,确定该文章有哪些主题
############################################## print(texts[1])
tt = dat['doc_topic_dists'][1]
msg = "{weight:02d}% in topic {topic_id:02d} which has top words {text:s}"
# 遍历这20个主题,观察一下它的权重,权重符合的跳出来
for topic_id, weight in enumerate(dat['doc_topic_dists'][1]):
if weight > 0.01:
# 权重符合要求,那么输出该主题下的关联词汇
text = ', '.join(topic_to_topwords[topic_id])
print (msg.format(topic_id=topic_id, weight=int(weight * 100.0), text=text)) # plt.bar(np.arange(20), dat['doc_topic_dists'][1]) print(texts[51])
tt = texts[51]
msg = "{weight:02d}% in topic {topic_id:02d} which has top words {text:s}"
for topic_id, weight in enumerate(dat['doc_topic_dists'][51]):
if weight > 0.01:
text = ', '.join(topic_to_topwords[topic_id])
print(msg.format(topic_id=topic_id, weight=int(weight * 100.0), text=text)) # plt.bar(np.arange(20), dat['doc_topic_dists'][51])

LDA模型数据的可视化的更多相关文章

  1. 基于 HTML5 的 WebGL 和 VR 技术的 3D 机房数据中心可视化

    前言 在 3D 机房数据中心可视化应用中,随着视频监控联网系统的不断普及和发展, 网络摄像机更多的应用于监控系统中,尤其是高清时代的来临,更加快了网络摄像机的发展和应用. 在监控摄像机数量的不断庞大的 ...

  2. LDA模型了解及相关知识

    什么是LDA? LDA是基于贝叶斯模型的,涉及到贝叶斯模型离不开“先验分布”,“数据(似然)”和"后验分布"三块.贝叶斯相关知识:先验分布 + 数据(似然)= 后验分布. 贝叶斯模 ...

  3. 文本主题抽取:用gensim训练LDA模型

    得知李航老师的<统计学习方法>出了第二版,我第一时间就买了.看了这本书的目录,非常高兴,好家伙,居然把主题模型都写了,还有pagerank.一路看到了马尔科夫蒙特卡罗方法和LDA主题模型这 ...

  4. B/S 端基于 HTML5 + WebGL 的 VR 3D 机房数据中心可视化

    前言 在 3D 机房数据中心可视化应用中,随着视频监控联网系统的不断普及和发展, 网络摄像机更多的应用于监控系统中,尤其是高清时代的来临,更加快了网络摄像机的发展和应用. 在监控摄像机数量的不断庞大的 ...

  5. BFM模型介绍及可视化实现(C++)

    BFM模型介绍及可视化实现(C++) BFM模型基本介绍 Basel Face Model是一个开源的人脸数据库,其基本原理是3DMM,因此其便是在PCA的基础上进行存储的. 目前有两个版本的数据库( ...

  6. 基于 HTML5 WebGL 和 VR 技术的 3D 机房数据中心可视化

    前言 在 3D 机房数据中心可视化应用中,随着视频监控联网系统的不断普及和发展, 网络摄像机更多的应用于监控系统中,尤其是高清时代的来临,更加快了网络摄像机的发展和应用. 在监控摄像机数量的不断庞大的 ...

  7. 基于 HTML5 WebGL + VR 的 3D 机房数据中心可视化

    前言 在 3D 机房数据中心可视化应用中,随着视频监控联网系统的不断普及和发展, 网络摄像机更多的应用于监控系统中,尤其是高清时代的来临,更加快了网络摄像机的发展和应用. 在监控摄像机数量的不断庞大的 ...

  8. 【转载 | 翻译】Visualizing A Neural Machine Translation Model(神经机器翻译模型NMT的可视化)

    转载并翻译Jay Alammar的一篇博文:Visualizing A Neural Machine Translation Model (Mechanics of Seq2seq Models Wi ...

  9. 【Model Log】模型评估指标可视化,自动画Loss、Accuracy曲线图工具,无需人工参与!

    1. Model Log 介绍 Model Log 是一款基于 Python3 的轻量级机器学习(Machine Learning).深度学习(Deep Learning)模型训练评估指标可视化工具, ...

随机推荐

  1. R语言概述

    R是一个有着统计分析功能及强大作图功能的软件系统,是由Ross Ihaka和Robert Gentleman共同创立.它是属于GNU系统的一个自由.免费.源码开放的软件,同一时候也是一个用于统计计算和 ...

  2. 8 -- 深入使用Spring -- 4...2 使用AspectJ实现AOP

    8.4.2 使用AspectJ实现AOP AspectJ是一个基于Java语言的AOP框架.Spring 4.0 的AOP对AspectJ很好的集成. AspectJ是Java 语言的一个AOP实现, ...

  3. iOS 优秀文章网址收录

    1. iOS应用支持IPV6,就那点事儿 地址:http://www.jianshu.com/p/a6bab07c4062 2. iOS配置IPV6网络 地址:http://www.jianshu.c ...

  4. 【RF库XML测试】通过xpath查找元素的说明

    Tag names:当仅使用1个tag的时候,xpath匹配具有该标签名称的所有直接子元素. Paths:通过/符号连接tag名称,例如second/child将匹配父元素second下所有的chil ...

  5. C++开发--在Visual Studio2013中使用boost::split()编译过程中出现error C4996

    Visual Studio is being overly cautious.  In debug mode, visual studio uses something called "Ch ...

  6. C#实现新建文件并写入内容

    using System; using System.IO; namespace ConsoleApplication1 { class Program { static void Main(stri ...

  7. C 预处理

    http://baike.baidu.com/link?url=0mwKZRcxHuNHa_TiwXgpQPS2S-YbOGCUJVSgZ9sb-qe-G-x4oIDZpWuZqiVNBsMYA4HT ...

  8. patrol_data_unit_edit.jsp

    <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <%@ page language ...

  9. RewriteCond和13个mod_rewrite应用举例Apache伪静态

    1.给子域名加www标记 RewriteCond %{HTTP_HOST} ^([a-z.]+)?example\.com$ [NC] RewriteCond %{HTTP_HOST} !^www\. ...

  10. openldap slapd.conf参数

    已安装系统的 /etc/openldap/slapd.conf 中包含 LDAP 服务器的完整配置文件.在此简述了其中的各个项并说明了必要的调整.以符号 (#) 为前缀的项处于非活动状态.必须取消这个 ...