一、简化前馈网络LeNet

import torch as t

class LeNet(t.nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.features = t.nn.Sequential(
t.nn.Conv2d(3, 6, 5),
t.nn.ReLU(),
t.nn.MaxPool2d(2, 2),
t.nn.Conv2d(6, 16, 5),
t.nn.ReLU(),
t.nn.MaxPool2d(2, 2)
)
# 由于调整shape并不是一个class层,
# 所以在涉及这种操作(非nn.Module操作)需要拆分为多个模型
self.classifiter = t.nn.Sequential(
t.nn.Linear(16*5*5, 120),
t.nn.ReLU(),
t.nn.Linear(120, 84),
t.nn.ReLU(),
t.nn.Linear(84, 10)
) def forward(self, x):
x = self.features(x)
x = x.view(-1, 16*5*5)
x = self.classifiter(x)
return x net = LeNet()

二、优化器基本使用方法

  1. 建立优化器实例
  2. 循环:
    1. 清空梯度
    2. 向前传播
    3. 计算Loss
    4. 反向传播
    5. 更新参数
from torch import optim

# 通常的step优化过程
optimizer = optim.SGD(params=net.parameters(), lr=1)
optimizer.zero_grad() # net.zero_grad() input_ = t.autograd.Variable(t.randn(1, 3, 32, 32))
output = net(input_)
output.backward(output) optimizer.step()

三、网络模块参数定制

为不同的子网络参数不同的学习率,finetune常用,使分类器学习率参数更高,学习速度更快(理论上)。

1.经由构建网络时划分好的模组进行学习率设定,

# # 直接对不同的网络模块制定不同学习率
optimizer = optim.SGD([{'params': net.features.parameters()}, # 默认lr是1e-5
{'params': net.classifiter.parameters(), 'lr': 1e-2}], lr=1e-5)

2.以网络层对象为单位进行分组,并设定学习率

# # 以层为单位,为不同层指定不同的学习率
# ## 提取指定层对象
special_layers = t.nn.ModuleList([net.classifiter[0], net.classifiter[3]])
# ## 获取指定层参数id
special_layers_params = list(map(id, special_layers.parameters()))
print(special_layers_params)
# ## 获取非指定层的参数id
base_params = filter(lambda p: id(p) not in special_layers_params, net.parameters())
optimizer = t.optim.SGD([{'params': base_params},
{'params': special_layers.parameters(), 'lr': 0.01}], lr=0.001)

四、在训练中动态的调整学习率

'''调整学习率'''
# 新建optimizer或者修改optimizer.params_groups对应的学习率
# # 新建optimizer更简单也更推荐,optimizer十分轻量级,所以开销很小
# # 但是新的优化器会初始化动量等状态信息,这对于使用动量的优化器(momentum参数的sgd)可能会造成收敛中的震荡
# ## optimizer.param_groups:长度2的list,optimizer.param_groups[0]:长度6的字典
print(optimizer.param_groups[0]['lr'])
old_lr = 0.1
optimizer = optim.SGD([{'params': net.features.parameters()},
{'params': net.classifiter.parameters(), 'lr': old_lr*0.1}], lr=1e-5)

可以看到optimizer.param_groups结构,[{'params','lr', 'momentum', 'dampening', 'weight_decay', 'nesterov'},{……}],集合了优化器的各项参数。

『PyTorch』第十一弹_torch.optim优化器的更多相关文章

  1. 『PyTorch』第十一弹_torch.optim优化器 每层定制参数

    一.简化前馈网络LeNet 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 im ...

  2. 『PyTorch』第十三弹_torch.nn.init参数初始化

    初始化参数的方法 nn.Module模块对于参数进行了内置的较为合理的初始化方式,当我们使用nn.Parameter时,初始化就很重要,而且我们也可以指定代替内置初始化的方式对nn.Module模块进 ...

  3. 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下

    『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 # Author : Hellcat # Time : 2018/2/11 import torch as t import t ...

  4. 『PyTorch』第三弹重置_Variable对象

    『PyTorch』第三弹_自动求导 torch.autograd.Variable是Autograd的核心类,它封装了Tensor,并整合了反向传播的相关实现 Varibale包含三个属性: data ...

  5. 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上

    总结一下相关概念: torch.Tensor - 一个近似多维数组的数据结构 autograd.Variable - 改变Tensor并且记录下来操作的历史记录.和Tensor拥有相同的API,以及b ...

  6. 『PyTorch』第十弹_循环神经网络

    RNN基础: 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练 TensorFlow RNN: 『TensotFlow』基础RNN网络分类问题 『TensotFlow』基础R ...

  7. 『PyTorch』第五弹_深入理解autograd_上:Variable属性方法

    在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创 ...

  8. 『PyTorch』第五弹_深入理解autograd_下:函数扩展&高阶导数

    一.封装新的PyTorch函数 继承Function类 forward:输入Variable->中间计算Tensor->输出Variable backward:均使用Variable 线性 ...

  9. 『PyTorch』第五弹_深入理解autograd_中:Variable梯度探究

    查看非叶节点梯度的两种方法 在反向传播过程中非叶子节点的导数计算完之后即被清空.若想查看这些变量的梯度,有两种方法: 使用autograd.grad函数 使用hook autograd.grad和ho ...

随机推荐

  1. QEvent postEvent/sendEvent

    可以自訂事件類型,最簡單的方式,是透過QEvent::Type指定事件類型的常數值,在建構QCustomEvent時作為建構引數並透過postEvent()傳送事件,例如: const QEvent: ...

  2. [VTK]基于VTK的三维重建

    https://www.cnblogs.com/dawnWind/archive/2013/02/17/3D_06.html 0. Background 很久很久以前记录了一下使用WPF进行三维重建的 ...

  3. 火狐使用Ctrl新开窗口不生效

    使用window.open新开页面,火狐浏览器无法使用Ctrl新开窗口后页面停留在当前页面,兼容性问题,使用<a>或者<router-link>标签即可解决 --贡献者:毛毛

  4. Docker与虚拟机技术

    最近docker技术在网络上非常火爆,各种技术下载中心总能看到一个以docker镜像方式下载的下载选项,而当你下载下来运行发现,这就是一个虚拟机嘛.究竟是不是呢?一起来看看. 我们先来看看传统意义上的 ...

  5. IMAP协议命令(详细)

    参照:http://www.cnblogs.com/qiubole/archive/2007/11/23/970180.html 转载:http://blog.sina.com.cn/s/blog_5 ...

  6. ReadResolve方法与序列化

    使用枚举实现的单例模式,不但可以防止利用反射强行构建单例对象,而且可以在枚举类对象被反序列化的时候,保证反序列的返回结果是同一对象. 对于其他方式实现的单例模式,如果既想要做到可序列化,又想要反序列化 ...

  7. HDU 2841 Visible Trees(容斥)题解

    题意:有一块(1,1)到(m,n)的地,从(0,0)看能看到几块(如果两块地到看的地方三点一线,后面的地都看不到). 思路:一开始是想不到容斥...后来发现被遮住的地都有一个特点,若(a,b)有gcd ...

  8. 全面理解虚拟DOM,实现虚拟DOM

    1.为什么需要虚拟DOM DOM是很慢的,其元素非常庞大,页面的性能问题鲜有由JS引起的,大部分都是由DOM操作引起的.如果对前端工作进行抽象的话,主要就是维护状态和更新视图:而更新视图和维护状态都需 ...

  9. 【jdk源码分析】java.lang.Appendable

    1.概述 public interface Appendable 能够被添加 char 序列和值的对象.如果某个类的实例打算接收取自 Formatter 的格式化输出,那么该类必须实现 Appenda ...

  10. UVa 1603 破坏正方形

    https://vjudge.net/problem/UVA-1603 题意:有一个火柴棍组成的正方形网格,计算至少要拿走多少根火柴才能破坏所有正方形. 思路:从边长为1的正方形开始遍历,将正方形的边 ...