Tarjan+缩点【强连通分量】【模板】
#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
const int maxn=;//边数
const int maxn1=;//顶点数
struct edge{
int from;
int to;
int next;
}EDGE[maxn];
vector<int>vc[maxn1];
int head[maxn1],dfn[maxn1],vis[maxn1],low[maxn1],col[maxn1],out[maxn1],in[maxn1],en[maxn1],stk[maxn1];//各个变量的意义可参照上篇博客
int edge_cnt=,tot1=,tot2=,scc_cnt=,tot0=;
void add(int x,int y)
{
EDGE[edge_cnt].from=x;
EDGE[edge_cnt].to=y;
EDGE[edge_cnt].next=head[x];
head[x]=edge_cnt++;
}
void Tarjan(int u)
{
low[u]=dfn[u]=++tot1;//注意tot1的初值必须是1【因为dfn必须为正数】,所以这里使用++tot1而不用tot1++;
vis[u]=;
stk[++tot2]=u;
for(int i = head[u]; i != - ; i = EDGE[i].next)
{
if(!dfn[EDGE[i].to]){
Tarjan(EDGE[i].to);
low[u]=min(low[u],low[EDGE[i].to]);
}
else if(vis[EDGE[i].to]){
low[u]=min(low[u],low[EDGE[i].to]);
}
}
if(low[u]==dfn[u]){
int xx;
scc_cnt++;//注意scc_cnt也是从1开始的,因为要染色,区别于为染色的0
do{
xx=stk[tot2--];
vc[scc_cnt].push_back(xx);
col[xx]=scc_cnt;
vis[xx]=;
}while(xx!=u);
}
}
void INIT()
{
for(int i = ; i < maxn1 ; i++)
vc[i].clear();
edge_cnt=,tot1=,tot2=,scc_cnt=,tot0=;
memset(head,-,sizeof(head));
memset(stk,,sizeof(stk));
memset(in,,sizeof(in));
memset(out,,sizeof(out));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(col,,sizeof(col));
}
void suodian()//缩点
{
for(int i = ; i < edge_cnt ; i++)
{
if(col[EDGE[i].from]!=col[EDGE[i].to])
{
in[col[EDGE[i].to]]++;//缩点
out[col[EDGE[i].from]]++;
}
}
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
INIT();
while(m--)
{
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
}
for(int i = ; i <= n; i++)
{
if(!dfn[i])Tarjan(i);
}
suodian();
return ;
}
/*4 5
1 3
2 4
4 2
1 4
2 1*/
Tarjan+缩点【强连通分量】【模板】的更多相关文章
- Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)
Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...
- Tarjan算法分解强连通分量(附详细参考文章)
Tarjan算法分解强连通分量 算法思路: 算法通过dfs遍历整个连通分量,并在遍历过程中给每个点打上两个记号:一个是时间戳,即首次访问到节点i的时刻,另一个是节点u的某一个祖先被访问的最早时刻. 时 ...
- tarjan算法(强连通分量 + 强连通分量缩点 + 桥(割边) + 割点 + LCA)
这篇文章是从网络上总结各方经验 以及 自己找的一些例题的算法模板,主要是用于自己的日后的模板总结以后防失忆常看看的, 写的也是自己能看懂即可. tarjan算法的功能很强大, 可以用来求解强连通分量, ...
- Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)【转】【修改】
一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成 ...
- (转)Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)
基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个 ...
- Tarjan在图论中的应用(一)——用Tarjan来实现强连通分量缩点
前言 \(Tarjan\)是一个著名的将强连通分量缩点的算法. 大致思路 它的大致思路就是在图上每个联通块中任意选一个点开始进行\(Tarjan\)操作(依据:强连通分量中的点可以两两到达,因此从任意 ...
- 求强连通分量模板(tarjan算法)
关于如何求强连通分量的知识请戳 https://www.byvoid.com/blog/scc-tarjan/ void DFS(int x) { dfn[x]=lowlink[x]=++dfn_cl ...
- tarjan强连通分量模板(pascal)
友好城市 [问题描述]小 w 生活在美丽的 Z 国. Z 国是一个有 n 个城市的大国, 城市之间有 m 条单向公路(连接城市 i. j 的公路只能从 i 连到 j). 城市 i. j 是友好城市当且 ...
- tarjan求强连通分量模板
什么是强连通分量? 百度百科 有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(stro ...
- HDU 1269 迷宫城堡 tarjan算法求强连通分量
基础模板题,应用tarjan算法求有向图的强连通分量,tarjan在此处的实现方法为:使用栈储存已经访问过的点,当访问的点离开dfs的时候,判断这个点的low值是否等于它的出生日期dfn值,如果相等, ...
随机推荐
- [.NET开发] C#实现的SQL备份与还原功能示例
本文实例讲述了C#实现的SQL备份与还原功能.分享给大家供大家参考,具体如下: //记得加 folderBrowserDialog1 openFileDialog1 控件 using System.D ...
- English trip -- Review Unit2 At school 在学校
What do you need,Loki? I need an eraser What does he need? He needs a dictionary Where's my pencil? ...
- FastDFS install
Version: os: centos7 x64 FastDFS: 5.05 libfastcommon: latest 1. dwonload libfastcommon https://githu ...
- JQuery $未定义
---恢复内容开始--- JQuery $未定义 转载▼ jquery是Yii集成的,利用jquery写的代码$(document).ready(function(){// 操作列表$('.ope ...
- char,varchar与text类型的区别和选用
(1)char: 它是定长格式的,但是长度范围是0~255. 当你想要储存一个长度不足255的字符时,mysql会用空格来填充剩下的字符.因此在读取数据时,char类型的数据要进行处理,把后面的空格去 ...
- setuid和setgid
关于有效用户,实际用户的问题,参考: http://www.cnblogs.com/kunhu/p/3699883.html 内核对进程存取文件的许可检查,是通过考查进程的有效用户ID来实现的的. 在 ...
- Java-Runtime 类
https://www.cnblogs.com/slyfox/p/7272048.html Java-Runtime 类 Runtime 类代表着Java程序的运行时环境,每个Java程序都有一个Ru ...
- BZOJ1605 [Usaco2008 Open]Crisis on the Farm 牧场危机
标题好长&&我是权限狗,汪汪! 题没看懂的我以为这是一道极难滴题目...然后,然后我就看懂题了. 数据少给了一个条件K <= 30...(没这条件还做个鬼...) f[k, i, ...
- js打开、关闭页面和运行代码那些事
<!doctype html> <html> <head> <meta charset="utf-8"> <meta name ...
- MinGW的gdb调试
MinGW(Minimalist GNU for Windows)提供了一套简单方便的Windows下的基于GCC程序开发环境.MinGW收集了一系列免费的Windows是用的头文件和库文件: ...