题意

在一个有N(1 ≤ N ≤ 1,000)个点环形图上有P(1 ≤ P ≤ 10,000)对点需要连接。连接只能连接环上相邻的点。问至少需要连接几条边。

思路

突破点在于最后的结果一定不是一个环!所以我们枚举断边,则对于P个连接要求都只有唯一的方法:如果一个pair的两个端点在断点两侧,就分成[0,left],[right,N];否则就是[left, right]。这里区间以0开头是要考虑left=1、right=N的情况,至少得有个边([0, 1])表示N连向1的情况不是么。

处理一个区间内相连情况通常可以用线段树。不过我在这里用了下并查集,也挺有意思的:每个并查集的父节点是它连接着的最右端的节点,并且维护一个数量集。然后连接[x, y]的时候直接找x的父节点(最右点),再挨个向右缩点直到y即可。

代码

[cpp]
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <string>
#include <cstring>
#include <vector>
#include <set>
#include <stack>
#include <queue>
#define MID(x,y) ((x+y)/2)
#define MEM(a,b) memset(a,b,sizeof(a))
#define REP(i, begin, end) for (int i = begin; i <= end; i ++)
using namespace std;

struct P{
int a, b;
}p[10005];
const int MAXN = 1005;
struct Disjoint_Sets{
struct Sets{
int father, num;
}S[MAXN];
void Init(int n){
for (int i = 0; i <= n; i ++){
S[i].father = i;
S[i].num = 1;
}
}
int Father(int x){
if (S[x].father == x){
return x;
}
else{
S[x].father = Father(S[x].father); //Path compression
return S[x].father;
}
}
void Union(int x, int y){
int fx = Father(x), fy = Father(y);
S[fy].num += S[fx].num;
S[fx].father = fy;
}
}DS;
void uni(int x, int y){
int xx = DS.Father(x);
while(DS.Father(xx) != DS.Father(y)){
DS.Union(xx, xx+1);
xx = DS.Father(xx);
}
}
int main(){
//freopen("test.in", "r", stdin);
//freopen("test.out", "w", stdout);
int n, m;
scanf("%d %d", &n, &m);
for (int i = 0; i < m; i ++){
scanf("%d %d", &p[i].a, &p[i].b);
if (p[i].b < p[i].a) swap(p[i].b, p[i].a);
}
int res = 0x3fffffff;
for (int l = 1; l <= n; l ++){
DS.Init(n);
for (int i = 0; i < m; i ++){
if (p[i].a <= l && p[i].b >= (l+1)%n){
uni(0, p[i].a);
uni(p[i].b, n);
}
else uni(p[i].a, p[i].b);
}
int sum = 0;
bool vis[1005] = {0};
for (int i = 1; i <= n; i ++){
if (!vis[DS.Father(i)] && DS.S[DS.Father(i)].num > 1){
sum += DS.S[DS.Father(i)].num - 1;
vis[DS.Father(i)] = 1;
}
}
res = min(res, sum);
}
printf("%d\n", res);
return 0;
}
[/cpp]

POJ 1944 Fiber Communications (枚举 + 并查集 OR 线段树)的更多相关文章

  1. 【BZOJ2054】疯狂的馒头(并查集,线段树)

    [BZOJ2054]疯狂的馒头(并查集,线段树) 题面 BZOJ 然而权限题,随便找个离线题库看看题吧. 题解 线段树就是个暴力,如果数据可以构造就能卡掉,然而不能构造,要不然复杂度瓶颈成为了读入了. ...

  2. POJ 1944 - Fiber Communications

    原题地址:http://poj.org/problem?id=1944 题目大意:有n个点排成一圈,可以连接任意两个相邻的点,给出 p 对点,要求这 p 对点必须直接或间接相连,求最少的连接边数 数据 ...

  3. 2019牛客第八场多校 E_Explorer 可撤销并查集(栈)+线段树

    目录 题意: 分析: @(2019牛客暑期多校训练营(第八场)E_Explorer) 题意: 链接 题目类似:CF366D,Gym101652T 本题给你\(n(100000)\)个点\(m(1000 ...

  4. ACM学习历程—SNNUOJ 1110 传输网络((并查集 && 离线) || (线段树 && 时间戳))(2015陕西省大学生程序设计竞赛D题)

    Description Byteland国家的网络单向传输系统可以被看成是以首都 Bytetown为中心的有向树,一开始只有Bytetown建有基站,所有其他城市的信号都是从Bytetown传输过来的 ...

  5. HDU 3974 Assign the task 并查集/图论/线段树

    Assign the task Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  6. UVALive - 5031 Graph and Queries (并查集+平衡树/线段树)

    给定一个图,支持三种操作: 1.删除一条边 2.查询与x结点相连的第k大的结点 3.修改x结点的权值 解法:离线倒序操作,平衡树or线段树维护连通块中的所有结点信息,加个合并操作就行了. 感觉线段树要 ...

  7. poj 2236:Wireless Network(并查集,提高题)

    Wireless Network Time Limit: 10000MS   Memory Limit: 65536K Total Submissions: 16065   Accepted: 677 ...

  8. POJ - 2912 Rochambeau (带权并查集+枚举)

    题意:有N个人被分为了三组,其中有一个人是开了挂的.同组的人的关系是‘=’,不同组的人关系是‘<’或'>',但是开了挂的人可以给出自己和他人任意的关系.现在要根据M条关系找出这个开了挂的人 ...

  9. poj 1182:食物链(种类并查集,食物链问题)

    食物链 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 44168   Accepted: 12878 Description ...

随机推荐

  1. SNMP学习笔记之SNMP4J介绍(Java)

    0x00 SNMP4J介绍 SNMP4J是一个用Java来实现SNMP(简单网络管理协议)协议的开源项目.它支持以命令行的形式进行管理与响应.SNMP4J是纯面向对象设计与SNMP++(用C++实现S ...

  2. Kali配置网络

    虚拟机NAT网关:192.168.50.1 主机VM8网址:192.168.50.2 虚拟机网卡:192.168.50.30 vim /etc/network/interfaces # The loo ...

  3. JavaScript Image对象 / Tabel对象 / Select对象 / Form对象

    JavaScript Image / Tabel / Select / Form 对象 版权声明:未经授权,严禁转载! Image 对象 Image 对象,代表 <img> 元素. < ...

  4. SRLTE,SGLTE,SVLTE,CSFB,VoLTE的区别【转】

    本文转载自:https://blog.csdn.net/dangbochang/article/details/43851979 SRLTE——Single Radio LTE,俗称单待LTE. SG ...

  5. openwrt如何单独编译uboot

    答:make package/boot/uboot-<chip series>/compile

  6. ZedGraph如何动态的加载曲线

    ZedGraph的在线文档 http://zedgraph.sourceforge.net/documentation/default.html 官网的源代码 http://sourceforge.n ...

  7. LOJ #10222. 「一本通 6.5 例 4」佳佳的 Fibonacci

    题目链接 题目大意 $$F[i]=F[i-1]+F[i-2]\ (\ F[1]=1\ ,\ F[2]=1\ )$$ $$T[i]=F[1]+2F[2]+3F[3]+...+nF[n]$$ 求$T[n] ...

  8. BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  9. Unity3D学习笔记(十八):动画内容补充

    动画系统: 旧动画系统(帧动画系统:关键帧驱动,关键帧记录的数据进行插值移动) 1.添加Animation,添加到父物体上 2.添加动画片段 3.添加关键帧(子物体的坐标是相对于父物体的坐标),帧之间 ...

  10. CSU 1805 Three Capitals(矩阵树定理+Best定理)

    http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1805 题意: A和B之间有a条边,A和G之间有b条边,B和G之间有c条边.现在从A点出发走遍所 ...