python进行数据分析----线性回归
线性回归分析:
方法:
import statsmodels.api as sm
import pandas as pd
from patsy.highlevel import dmatrices ----2.7里面是 from patsy import dmatrices
hg ='D:/hg.csv'
df=pd.read_csv(hg)
vars=['rkzzl','zrs','rjgdp']
df=df[vars]
y,X=dmatrices(' rkzzl ~ zrs + rjgdp ',data=df,return_type='dataframe')
mod=sm.OLS(y,X)
res=mod.fit()
print res.summary()
所有代码:
import statsmodels.api as sm
import pandas as pd
import numpy as np
from patsy.highlevel import dmatrices
from common.util.my_sqlalchemy import sqlalchemy_engine
import math
sql = "select Q1R3, Q1R5, Q1R6, Q1R7 from db2017091115412316222027656281_1;"
df = pd.read_sql(sql, sqlalchemy_engine)
df_dropna = df.dropna()
y,X=dmatrices(' Q1R3 ~ Q1R5 + Q1R6 + Q1R7',data=df_dropna,return_type='dataframe')
mod=sm.OLS(y,X)
res=mod.fit()
result = res.summary()
print(result)
model = {
'n': int(res.nobs),
'df': res.df_model,
'r': math.sqrt(res.rsquared),
'r_squared':res.rsquared,
'r_squared_adj': res.rsquared_adj,
'f_statistic': res.fvalue, # F检验
'prob_f_statistic': res.f_pvalue,
}
coefficient = {
'coefficient':list(res.params),
'std': list(np.diag(np.sqrt(res.cov_params()))),
't': list(res.tvalues),
'sig': [i for i in map(lambda x:float(x),("".join("{:.4f},"*len(res.pvalues)).format(*list(res.pvalues))).rstrip(",").split(","))]
}
returnValue = {'model': model, 'coefficient': coefficient}
print(returnValue)

{
'model': {
'df': 3.0,
'n': ,
'prob_f_statistic': 1.185607423551511e-17,
'r_squared_adj': 0.11247707470462853,
'f_statistic': 29.049896130483212,
'r_squared': 0.11648696743939679,
'r': 0.3413018714267427},
'coefficient': {
'std': [0.30170364007280126, 0.049972399035516278, 0.051623405028706125, 0.047659986606566104],
'sig': [0.0, 0.0, 0.0, 0.0312],
't': [5.4578212730306044, 5.3469744215460269, 4.3810228293129168, 2.1587543885465008],
'coefficient': [1.6466445449401035, 0.26720113942619689, 0.22616331595762876, 0.10288620524499202]}
}
python进行数据分析----线性回归的更多相关文章
- python进行数据分析
1. python进行数据分析----线性回归 2. python进行数据分析------相关分析 3. python进行数据分析---python3卡方 4. 多重响应分析,多选题二分法思路 5. ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...
- 利用Python进行数据分析(9) pandas基础: 汇总统计和计算
pandas 对象拥有一些常用的数学和统计方法. 例如,sum() 方法,进行列小计: sum() 方法传入 axis=1 指定为横向汇总,即行小计: idxmax() 获取最大值对应的索 ...
- 利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作
一.reindex() 方法:重新索引 针对 Series 重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 ...
- 利用Python进行数据分析(7) pandas基础: Series和DataFrame的简单介绍
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构 ...
- 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍
一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...
- 《利用python进行数据分析》读书笔记 --第一、二章 准备与例子
http://www.cnblogs.com/batteryhp/p/4868348.html 第一章 准备工作 今天开始码这本书--<利用python进行数据分析>.R和python都得 ...
- 利用python进行数据分析之绘图和可视化
matplotlib API入门 使用matplotlib的办法最常用的方式是pylab的ipython,pylab模式还会向ipython引入一大堆模块和函数提供一种更接近与matlab的界面,ma ...
随机推荐
- 【Unity】6.6 Random类
分类:Unity.C#.VS2015 创建日期:2016-04-20 一.简介 Unity引擎提供的Random类可以用来生成随机数.随机点或旋转角度. 1.成员变量 seed:设置用于随机数生成器的 ...
- 解决myeclipse/eclipse创建或导入maven工程时引发的问题
起因: 最近学习maven,按照教程把命令行创建的maven工程导入到eclipse/myeclipse,由于库中没有一些依赖包,所以在导入工程的时候开发工具自动下载依赖包.可是,由于天朝特殊环境的问 ...
- Django入门(二)
这一节主要介绍django中的model,template模板. model是django自带的orm框架,下面我们来搭建一个博客网站,来看看是如何使用的. 1.新建应用blog python man ...
- android Socket 编程
Socket 通信 1.UDP实现 (DatagramSocket) [客户端] //首先创建一个DatagramSocket对象 DatagramSocket socket = new Datag ...
- 漫游Kafka之过期数据清理【转】
转自:http://blog.csdn.net/honglei915/article/details/49683065 Kafka将数据持久化到了硬盘上,允许你配置一定的策略对数据清理,清理的策略有两 ...
- 玩转Bootstrap(JS插件篇)-第1章 模态弹出框 :1-2 动画过渡
动画过渡(Transitions) 这一小节我们先来讲“动画过渡(Transitions)”这个插件的使用,源文件:transition.js Bootstrap框架默认给各个组件提供了基本动画的过渡 ...
- 关于SpringKafka消费者的几个监听器:[一次处理单条消息和一次处理一批消息]以及[自动提交offset和手动提交offset]
自己在使用Spring Kafka 的消费者消费消息的时候的实践总结: 接口 KafkaDataListener 是spring-kafka提供的一个供消费者接受消息的顶层接口,也是一个空接口; pu ...
- ubuntu+nginx+laravel
1, 到http://v4.golaravel.com/docs/4.2/installation 点击下载最新版Laravel框架.然后解压 2,把laravel-master下的文件夹拷入到php ...
- Docker 构建网络服务后本机不能访问
Docker 构建网络服务后本机不能访问 起因 使用tornado构建了一个服务,测试都没有问题 使用docker构建镜像,使用docker run image_name启动服务 使用浏览器访问 12 ...
- Docker 入门(Mac环境)- part 4 swarms
part-4 Swarms 简介 这一节主要是介绍一下如何在集群模式下部署docker应用:集群的概念很好理解了,多台机器共同完成一项任务:和Hadoop那些集群一样,docker也相当于有一个管理机 ...