X-factor Chains
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7375   Accepted: 2340

Description

Given a positive integer X, an X-factor chain of length m is a sequence of integers,

1 = X0X1X2, …, Xm = X

satisfying

Xi < Xi+1 and Xi | Xi+1 where a | b means a perfectly divides into b.

Now we are interested in the maximum length of X-factor chains and the number of chains of such length.

Input

The input consists of several test cases. Each contains a positive integer X (X ≤ 220).

Output

For each test case, output the maximum length and the number of such X-factors chains.

Sample Input

2
3
4
10
100

Sample Output

1 1
1 1
2 1
2 2
4 6

Source

题意:
1 = X0X1X2, …, Xm = X,X0~Xm都是X的因子并且递增,给出X求出最长的链,有几条最长的链。
代码:
//最长链就是X的素因子的个数,数量就是这些素因子的排列组合(重复的只算一个)
//(全部质因子个数的阶乘)/(每个质因子个数的阶乘)
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int MAXN = ;
int prime[MAXN+];
void getPrime()
{
memset(prime,,sizeof(prime));
for(int i = ;i <= MAXN;i++)
{
if(!prime[i])prime[++prime[]] = i;
for(int j = ;j <= prime[] && prime[j] <= MAXN/i;j++)
{
prime[prime[j]*i] = ;
if(i % prime[j] == )break;
}
}
}
int factor[][];//factor[i][0]存素因子,factor[i][1]存素因子的个数
int fatCnt;//不重复的素因子个数
int getFactors(long long x)
{
fatCnt = ;
long long tmp = x;
for(int i = ; prime[i] <= tmp/prime[i];i++)
{
factor[fatCnt][] = ;
if(tmp % prime[i] == )
{
factor[fatCnt][] = prime[i];
while(tmp % prime[i] == )
{
factor[fatCnt][] ++;
tmp /= prime[i];
}
fatCnt++;
}
}
if(tmp != )
{
factor[fatCnt][] = tmp;
factor[fatCnt++][] = ;
}
return fatCnt;
}
ll jc(int x){
ll s=;
for(int i=;i<=x;i++)
s*=i;
return s;
}
int main()
{
getPrime();
int x;
while(scanf("%d",&x)==){
getFactors(x);
int ans1=;
ll tmp=;
for(int i=;i<fatCnt;i++){
//cout<<factor[i][0]<<" "<<factor[i][1]<<endl;
ans1+=factor[i][];
tmp*=jc(factor[i][]);
}
printf("%d %lld\n",ans1,jc(ans1)/tmp);
}
return ;
}

POJ 3421分解质因数的更多相关文章

  1. POJ 1845 Sumdiv#质因数分解+二分

    题目链接:http://poj.org/problem?id=1845 关于质因数分解,模板见:http://www.cnblogs.com/atmacmer/p/5285810.html 二分法思想 ...

  2. POJ 1142:Smith Numbers(分解质因数)

                                   Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submiss ...

  3. poj 1730Perfect Pth Powers(分解质因数)

                                                             id=1730">Perfect Pth Powers Time Li ...

  4. POJ1811(SummerTrainingDay04-G miller-rabin判断素性 && pollard-rho分解质因数)

    Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 35528   Accepted: 9479 Case ...

  5. java分解质因数

      package test; import java.util.Scanner; public class Test19 { /** * 分析:对n进行分解质因数,应先找到一个最小的质数k * 最小 ...

  6. 程序设计入门——C语言 第6周编程练习 1 分解质因数(5分)

    1 分解质因数(5分) 题目内容: 每个非素数(合数)都可以写成几个素数(也可称为质数)相乘的形式,这几个素数就都叫做这个合数的质因数.比如,6可以被分解为2x3,而24可以被分解为2x2x2x3. ...

  7. 【python】将一个正整数分解质因数

    def reduceNum(n): '''题目:将一个正整数分解质因数.例如:输入90,打印出90=2*3*3*5''' print '{} = '.format(n), : print 'Pleas ...

  8. light oj 1236 分解质因数

    题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/H 题意:求满足1<=i<=j<=n ...

  9. Mathematics:X-factor Chains(POJ 3421)

    X链条 题目大意,从1到N,1 = X0, X1, X2, …, Xm = X中间可以分成很多数,另Xi < Xi+1 Xi 可以整除Xi+1 ,求最大长度m和m长度的链有多少条 思路: 很简单 ...

随机推荐

  1. BZOJ 4557 JLOI2016 侦查守卫 树形dp

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4557 题意概述: 给出一棵树,每个点付出代价w[i]可以控制距离和它不超过d的点,现在给 ...

  2. 给你的WP应用加上帮助文档

    背景 这算是Windows Phone编程回顾续篇, 接着给大家聊WP开发经验. 在开发了数个WP应用并发布后, 陆续收到很多反馈邮件, 其中接近一半的邮件是在问"某某功能有没有?" ...

  3. Beta阶段项目展示博客

    Beta阶段项目展示 团队成员的简介 详细见团队简介 角色 姓名 照片 项目经理,策划 游心 策划 王子铭 策划 蔡帜 美工 赵晓宇 美工 王辰昱 开发.架构师 解小锐 开发 陈鑫 开发 李金奇 开发 ...

  4. 无法启动mysql服务 错误1067:进程意外中止

    这个错误在前些周遇到过,没有解决,直接粗暴的卸载重装了,自己用的是wampserver集成环境,重装的后果是mysql里面的一些已有的数据库就没有了,有点小悲剧,不过幸好都是一些测试用的数据库,后面直 ...

  5. java集合类小结

    1 集合的框架体系 List简介 集合的使用场合 List(链表|线性表)和Set(集) java.util.Collection ---| Collection 描述所有接口的共性 ----| Li ...

  6. java---StringBuilder类的用法(转载)

    转载自http://blog.csdn.net/zi_jun/article/details/7624999 String对象是不可改变的.每次使用 System.String类中的方法之一时,都要在 ...

  7. OSG数学基础:坐标系变换

    三维实体对象需要经过一系列的坐标变换才能正确.真实地显示在屏幕上.在一个场景中,当读者对场景中的物体进行各种变换及相关操作时,坐标系变换是非常频繁的. 坐标系变换通常包括:世界坐标系-物体坐标系变换. ...

  8. Gitkraken系列-Gitkraken使用操作

    一个优秀的团队合作离不开git,一个优秀的程序员也离不开git.gitkraken是我在进行软工实践这门课接触到的git的UI界面的工具,它给我留下的印象就是非常好用和方便 怎么个方便法呢? 方便的安 ...

  9. 单行文字溢出和多行文字溢出省略号显示的CSS样式

    单行文字溢出,CSS样式 <h6 style="width:70px;overflow:hidden;white-space:nowrap;text-overflow:ellipsis ...

  10. 关于设置Visaul Studio 2010 代码编辑界面背景的方法

    1.打开代码编辑界面: 2.找到工具--选项: 3.打开选项后选中纯文本--项背景色: 4.点击自定义,找到自己需要的颜色: [注]: “项前景色”即代码的颜色: “项背景色”即背景颜色. 设置好后, ...