Description

Triathlon is an athletic contest consisting of three consecutive sections that should be completed as fast as possible as a whole. The first section is swimming, the second section is riding bicycle and the third one is running.

The speed of each contestant in all three sections is known. The judge can choose the length of each section arbitrarily provided that no section has zero length. As a result sometimes she could choose their lengths in such a way that some particular contestant would win the competition.

Input

The first line of the input file contains integer number N (1 <= N <= 100), denoting the number of contestants. Then N lines follow, each line contains three integers Vi, Ui and Wi (1 <= Vi, Ui, Wi <= 10000), separated by spaces, denoting the speed of ith contestant in each section.

Output

For every contestant write to the output file one line, that contains word "Yes" if the judge could choose the lengths of the sections in such a way that this particular contestant would win (i.e. she is the only one who would come first), or word "No" if this is impossible.
 
题目大意:铁人三项中,给出每个人玩铁人三项的速度,问能否通过调整这些比赛的距离(比如100米改成200米),使某个人获胜。
思路:设铁人三项的长度为x、y、z,x + y + z = 1,那么z = 1 - x - y。对于某个人cur,要满足对所有的人 i ,x / spd1[cur] + y / spd2[cur] + z / spd3[cur] < x / spd1[i] + y / spd2[i] + z / spd3[i]。
化简可得(1/spd1[i] - 1/spd1[cur] - 1/spd3[i] + 1/spd3[cur])*x + (1/spd2[i] - 1/spd2[cur] - 1/spd3[i] + 1/spd3[cur])*y + (1/spd3[i] - 1/spd3[cur]) > 0。
然后建立x+y<1和x>0,y>0,与上面的不等式,求是否存在可行域。求半平面交看有否可行域即可。
 
正在做模板,想办法把ax+by+c>0化成了两点式(见代码,要分类讨论),再做半平面交,我这种写法要EPS=1e-16才能过,丢的精度太多了。
 
代码(94MS):
 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std; const int MAXN = ;
const double EPS = 1e-;
const double PI = acos(-1.0);//3.14159265358979323846
const double INF = ; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y, ag;
Point() {}
Point(double x, double y): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
bool operator == (const Point &rhs) const {
return sgn(x - rhs.x) == && sgn(y - rhs.y) == ;
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (const int &b) const {
return Point(x * b, y * b);
}
Point operator / (const int &b) const {
return Point(x / b, y / b);
}
double length() {
return sqrt(x * x + y * y);
}
Point unit() {
return *this / length();
}
void print() {
printf("%.10f %.10f\n", x, y);
}
};
typedef Point Vector; double dist(const Point &a, const Point &b) {
return (a - b).length();
} double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
}
//ret >= 0 means turn left
double cross(const Point &sp, const Point &ed, const Point &op) {
return sgn(cross(sp - op, ed - op));
} double area(const Point& a, const Point &b, const Point &c) {
return fabs(cross(a - c, b - c)) / ;
}
//counter-clockwise
Point rotate(const Point &p, double angle, const Point &o = Point(, )) {
Point t = p - o;
double x = t.x * cos(angle) - t.y * sin(angle);
double y = t.y * cos(angle) + t.x * sin(angle);
return Point(x, y) + o;
} struct Seg {
Point st, ed;
double ag;
Seg() {}
Seg(Point st, Point ed): st(st), ed(ed) {}
void read() {
st.read(); ed.read();
}
void makeAg() {
ag = atan2(ed.y - st.y, ed.x - st.x);
}
};
typedef Seg Line; //ax + by + c > 0
Line buildLine(double a, double b, double c) {
if(sgn(a) == && sgn(b) == ) return Line(Point(sgn(c) > ? - : , INF), Point(, INF));
if(sgn(a) == ) return Line(Point(sgn(b), -c/b), Point(, -c/b));
if(sgn(b) == ) return Line(Point(-c/a, ), Point(-c/a, sgn(a)));
if(b < ) return Line(Point(, -c/b), Point(, -(a + c) / b));
else return Line(Point(, -(a + c) / b), Point(, -c/b));
} void moveRight(Line &v, double r) {
double dx = v.ed.x - v.st.x, dy = v.ed.y - v.st.y;
dx = dx / dist(v.st, v.ed) * r;
dy = dy / dist(v.st, v.ed) * r;
v.st.x += dy; v.ed.x += dy;
v.st.y -= dx; v.ed.y -= dx;
} bool isOnSeg(const Seg &s, const Point &p) {
return (p == s.st || p == s.ed) ||
(((p.x - s.st.x) * (p.x - s.ed.x) < ||
(p.y - s.st.y) * (p.y - s.ed.y) < ) &&
sgn(cross(s.ed, p, s.st) == ));
} bool isIntersected(const Point &s1, const Point &e1, const Point &s2, const Point &e2) {
return (max(s1.x, e1.x) >= min(s2.x, e2.x)) &&
(max(s2.x, e2.x) >= min(s1.x, e1.x)) &&
(max(s1.y, e1.y) >= min(s2.y, e2.y)) &&
(max(s2.y, e2.y) >= min(s1.y, e1.y)) &&
(cross(s2, e1, s1) * cross(e1, e2, s1) >= ) &&
(cross(s1, e2, s2) * cross(e2, e1, s2) >= );
} bool isIntersected(const Seg &a, const Seg &b) {
return isIntersected(a.st, a.ed, b.st, b.ed);
} bool isParallel(const Seg &a, const Seg &b) {
return sgn(cross(a.ed - a.st, b.ed - b.st)) == ;
} //return Ax + By + C =0 's A, B, C
void Coefficient(const Line &L, double &A, double &B, double &C) {
A = L.ed.y - L.st.y;
B = L.st.x - L.ed.x;
C = L.ed.x * L.st.y - L.st.x * L.ed.y;
}
//point of intersection
Point operator * (const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
Point I;
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
} bool isEqual(const Line &a, const Line &b) {
double A1, B1, C1;
double A2, B2, C2;
Coefficient(a, A1, B1, C1);
Coefficient(b, A2, B2, C2);
return sgn(A1 * B2 - A2 * B1) == && sgn(A1 * C2 - A2 * C1) == && sgn(B1 * C2 - B2 * C1) == ;
} struct Poly {
int n;
Point p[MAXN];//p[n] = p[0]
void init(Point *pp, int nn) {
n = nn;
for(int i = ; i < n; ++i) p[i] = pp[i];
p[n] = p[];
}
double area() {
if(n < ) return ;
double s = p[].y * (p[n - ].x - p[].x);
for(int i = ; i < n; ++i)
s += p[i].y * (p[i - ].x - p[i + ].x);
return s / ;
}
}; void Graham_scan(Point *p, int n, int *stk, int &top) {//stk[0] = stk[top]
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[i], p[stk[top]], p[stk[top - ]]) >= ) --top;
stk[++top] = i;
}
}
//use for half_planes_cross
bool cmpAg(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(cross(b.ed, a.st, b.st)) < ;
return a.ag < b.ag;
}
//clockwise, plane is on the right
bool half_planes_cross(Line *v, int vn, Poly &res, Line *deq) {
int i, n;
sort(v, v + vn, cmpAg);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(isParallel(deq[tail - ], deq[tail]) || isParallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(cross(v[i].ed, deq[tail - ] * deq[tail], v[i].st)) > )
--tail;
while(head < tail && sgn(cross(v[i].ed, deq[head] * deq[head + ], v[i].st)) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(cross(deq[head].ed, deq[tail - ] * deq[tail], deq[head].st)) > )
--tail;
while(head < tail && sgn(cross(deq[tail].ed, deq[head] * deq[head + ], deq[tail].st)) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.p[res.n++] = deq[i] * deq[i + ];
res.p[res.n++] = deq[head] * deq[tail];
res.n = unique(res.p, res.p + res.n) - res.p;
res.p[res.n] = res.p[];
return true;
} /*******************************************************************************************/ Poly poly;
Line line[MAXN], deq[MAXN];
double a[MAXN], b[MAXN], c[MAXN];
char str[];
int n, m; double calc(double x, double y) {
return (y - x) / (x * y);
} bool check(int cur) {
n = ;
line[n++] = buildLine(-, -, INF); line[n - ].makeAg();
line[n++] = buildLine(, , ); line[n - ].makeAg();
line[n++] = buildLine(, , ); line[n - ].makeAg();
for(int i = ; i < m; ++i) {
if(i == cur) continue;
line[n++] = buildLine(calc(a[i], a[cur]) + calc(c[cur], c[i]), calc(b[i], b[cur]) + calc(c[cur], c[i]), INF * calc(c[i], c[cur]));
line[n - ].makeAg();
//printf("%.10f %.10f\n", calc(a[i], a[cur]) + calc(c[cur], c[i]), calc(b[i], b[cur]) + calc(c[cur], c[i])), line[n - 1].st.print(), line[n - 1].ed.print();
}
bool flag = half_planes_cross(line, n, poly, deq);
return flag && sgn(poly.area());
} int main() {
scanf("%d", &m);
for(int i = ; i < m; ++i) scanf("%lf%lf%lf", &a[i], &b[i], &c[i]);
for(int i = ; i < m; ++i)
if(check(i)) puts("Yes");
else puts("No");
}

POJ 1755 Triathlon(线性规划の半平面交)的更多相关文章

  1. POJ 1755 Triathlon (半平面交)

    Triathlon Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4733   Accepted: 1166 Descrip ...

  2. POJ 1755 Triathlon [半平面交 线性规划]

    Triathlon Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 6912   Accepted: 1790 Descrip ...

  3. POJ 1755 Triathlon

    http://poj.org/problem?id=1755 题意:铁人三项,每个人有自己在每一段的速度,求有没有一种3条路线长度都不为0的设计使得某个人能严格获胜? 我们枚举每个人获胜,得到不等式组 ...

  4. 2018.07.03 POJ 1279Art Gallery(半平面交)

    Art Gallery Time Limit: 1000MS Memory Limit: 10000K Description The art galleries of the new and ver ...

  5. POJ 3335 Rotating Scoreboard 半平面交求核

    LINK 题意:给出一个多边形,求是否存在核. 思路:比较裸的题,要注意的是求系数和交点时的x和y坐标不要搞混...判断核的顶点数是否大于1就行了 /** @Date : 2017-07-20 19: ...

  6. POJ 1474 Video Surveillance 半平面交/多边形核是否存在

    http://poj.org/problem?id=1474 解法同POJ 1279 A一送一 缺点是还是O(n^2) ...nlogn的过几天补上... /********************* ...

  7. POJ 1279 Art Gallery 半平面交/多边形求核

    http://poj.org/problem?id=1279 顺时针给你一个多边形...求能看到所有点的面积...用半平面对所有边取交即可,模版题 这里的半平面交是O(n^2)的算法...比较逗比.. ...

  8. BZOJ1896 Equations 线性规划+半平面交+三分

    题意简述 给你\(3\)个数组\(a_i\),\(b_i\)和\(c_i\),让你维护一个数组\(x_i\),共\(m\)组询问,每次给定两个数\(s\),\(t\),使得 \[ \sum_i a_i ...

  9. POJ 1279 Art Gallery 半平面交求多边形核

    第一道半平面交,只会写N^2. 将每条边化作一个不等式,ax+by+c>0,所以要固定顺序,方便求解. 半平面交其实就是对一系列的不等式组进行求解可行解. 如果某点在直线右侧,说明那个点在区域内 ...

随机推荐

  1. UICollectionView reloadItemsAtIndexPaths时 报错

    在刷新下载进度时 Xcode报错误: Terminating app due to uncaught exception 'NSInternalInconsistencyException', rea ...

  2. MySQL高可用之MGR安装测试

    Preface     We've learned the machenism of MGR yesterday,Let's configurate an environment and have s ...

  3. 爬虫——Scrapy框架案例二:阳光问政平台

    阳光热线问政平台 URL地址:http://wz.sun0769.com/index.php/question/questionType?type=4&page= 爬取字段:帖子的编号.投诉类 ...

  4. HTML 5 audio标签

    audio标签的介绍 定义: <audio> 标签定义声音,比如音乐或其他音频流. <audio></audio>是HTML5中的新标签 能够在浏览器中播放音频, ...

  5. lamp 安装 apache

    lamp安装 httpd-2.2.4.tar.gz :http://download.csdn.net/detail/wulvla020311/8046141 先检查一下装的东西都在不在:rpm -q ...

  6. Hbase 表的Rowkey设计避免数据热点

    一.案例分析 常见避免数据热点问题的处理方式有:加盐.哈希.反转等方法结合预分区使用. 由于目前原数据第一字段为时间戳形式,第二字段为电话号码,直接存储容易引起热点问题,通过加随机列.组合时间戳.字段 ...

  7. django创建第一个视图-4

    创建视图 打开 demo 应用下的 views.py 文件,添加代码 from django.http import HttpResponse from django.shortcuts import ...

  8. 使用boost.asio实现网络通讯

    #include <boost/asio.hpp> #define USING_SSL //是否加密 #ifdef USING_SSL #include <boost/asio/ss ...

  9. Simple, Poetic, Pithy

    源自:Rob Pike points out Simple, Poetic, Pithy Don't communicate by sharing memory, share memory by co ...

  10. 20145202马超《java》实验四

    实验指导:http://www.cnblogs.com/lxm20145215----/p/5444207.html 实验指导:http://www.cnblogs.com/Vivian517/p/6 ...