海量数据处理之Bloom Filter详解
1.1、集合表示和元素查询
下面我们具体来看Bloom Filter是如何用位数组表示集合的。初始状态时,Bloom Filter是一个包含m位的位数组,每一位都置为0。
为了表达S={x1, x2,…,xn}这样一个n个元素的集合,Bloom Filter使用k个相互独立的哈希函数(Hash Function),它们分别将集合中的每个元素映射到{1,…,m}的范围中。对任意一个元素x,第i个哈希函数映射的位置hi(x)就会被置为1(1≤i≤k)。注意,如果一个位置多次被置为1,那么只有第一次会起作用,后面几次将没有任何效果。在下图中,k=3,且有两个哈希函数选中同一个位置(从左边数第五位,即第二个“1“处)。
在判断y是否属于这个集合时,我们对y应用k次哈希函数,如果所有hi(y)的位置都是1(1≤i≤k),那么我们就认为y是集合中的元素,否则就认为y不是集合中的元素。下图中y1就不是集合中的元素(因为y1有一处指向了“0”位)。y2或者属于这个集合,或者刚好是一个false positive。
1.2、错误率估计
前面我们已经提到了,Bloom Filter在判断一个元素是否属于它表示的集合时会有一定的错误率(false positive rate),下面我们就来估计错误率的大小。在估计之前为了简化模型,我们假设kn<m且各个哈希函数是完全随机的。当集合S={x1, x2,…,xn}的所有元素都被k个哈希函数映射到m位的位数组中时,这个位数组中某一位还是0的概率是:
其中1/m表示任意一个哈希函数选中这一位的概率(前提是哈希函数是完全随机的),(1-1/m)表示哈希一次没有选中这一位的概率。要把S完全映射到位数组中,需要做kn次哈希。某一位还是0意味着kn次哈希都没有选中它,因此这个概率就是(1-1/m)的kn次方。令p = e-kn/m是为了简化运算,这里用到了计算e时常用的近似:
令ρ为位数组中0的比例,则ρ的数学期望E(ρ)= p’。在ρ已知的情况下,要求的错误率(false positive rate)为:
(1-ρ)为位数组中1的比例,(1-ρ)k就表示k次哈希都刚好选中1的区域,即false positive rate。上式中第二步近似在前面已经提到了,现在来看第一步近似。p’只是ρ的数学期望,在实际中ρ的值有可能偏离它的数学期望值。M. Mitzenmacher已经证明[2] ,位数组中0的比例非常集中地分布在它的数学期望值的附近。因此,第一步的近似得以成立。分别将p和p’代入上式中,得:
相比p’和f’,使用p和f通常在分析中更为方便。
海量数据处理之Bloom Filter详解的更多相关文章
- 海量数据处理算法—Bloom Filter
海量数据处理算法—Bloom Filter 1. Bloom-Filter算法简介 Bloom-Filter,即布隆过滤器,1970年由Bloom中提出.它可以用于检索一个元素是否在一个集合中. Bl ...
- bloom filter 详解[转]
Bloom Filter概念和原理 焦萌 2007年1月27日 Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.Bloom ...
- 布隆过滤器(Bloom Filter)详解——基于多hash的概率查找思想
转自:http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html 布隆过滤器[1](Bloom Filter)是由布隆(Burton ...
- [转载] 布隆过滤器(Bloom Filter)详解
转载自http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html 布隆过滤器[1](Bloom Filter)是由布隆(Burton ...
- 布隆过滤器(Bloom Filter)详解
直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中.和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一 ...
- 【转】海量数据处理算法-Bloom Filter
1. Bloom-Filter算法简介 Bloom Filter(BF)是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合.它是一个判断元素是否存在于 ...
- css filter详解
css filter详解 filter 属性详解 属性 名称 类型 说明 grayscale 灰度 值为数值 取值范围从0到1的小数(包括0和1) sepia 褐色 值为数值 取值范围从0到1的小数( ...
- Spring Security Filter详解
Spring Security Filter详解 汇总 Filter 作用 DelegatingFilterProxy Spring Security基于这个Filter建立拦截机制 Abstract ...
- java web之Filter详解
java web之Filter详解 2012-10-20 0 个评论 作者:chenshufei2 收藏 我要投稿 .概念: Filter也称之为过滤器,它是Servlet技术中比较激动人心的技术,W ...
随机推荐
- azkaban入门中遇到的问题
执行时报错,后来发现他的配置文件中写了相对路径!!所以必须在他的根目录下执行,命令为 nohup bin/azkaban-web-start.sh 1>/tmp/azstd.out 2&g ...
- PYTHON中 赋值运算的若干问题总结
1.PYTHON中没有自增自减操作(++,——): 因为PYTHON中对于字符.数值等不可变的对象来说,自增自减没有意义. 2.PYTHON中l连接操作总是创建一个新对象. 举例: L=[1,2] M ...
- quick-cocos2d-x 创建自定义lua绑定c++类
内容主要参考 “在quick-cocos2d-x中添加自定义的类给lua使用” ( http://www.codeo4.cn/archives/746) 1. quick-coco2d-x 使用 to ...
- thinkphp nginx 上配置 并解决get获取到数据现象
server { listen 80; server_name XXXX.funova.net XXX.funova.com; root /opt/newgm; index index.php; lo ...
- php 区分中文,英文,中英混合
$str1="是你"; $strA = trim($str1); $lenA = strlen($strA); $lenB = mb_strlen($strA,"utf- ...
- 微信公众号实现zaabix报警2017脚本(升级企业微信后)
#!/bin/bash CropID='xxxxxxxxxxxxxxxxx' Secret='xxxxxxxxxxxxxxxx' GURL="https://qyapi.weixin.qq. ...
- VC++Debug查看堆对象内容,即使符号已经超出作用范围
Sometimes you'd like to watch the value of an object (on the heap) even after the symbol goes of sco ...
- python3----练习题(弹幕跟随)
# 导入模块 import requests # 1. 网络请求 2.pip install requests import time # 用于时间控制 import random # 随机模块 产生 ...
- C#实现动态编译代码
/*------------------------------------------------------------------------------ * Copyright (C) 201 ...
- iOS-@2x,@3x是什么意思
当我们在公司使用UI给出的图片时候,xxx.png,xxx@2x.png,xxx@3x.png的时候,不知道分别代表着什么! 本人也是菜鸟一枚,全凭自己尝试理解而已,在尝试中得出下面的结论: xxx. ...