Standard score(z-分数)

The standard score is the signed number of standard deviations by which the value of an observation or data point differs from the mean value of what is being observed or measured.Observed values above the mean have positive standard scores, while values below the mean have negative standard scores. The standard score is a dimensionless quantity obtained by subtracting the population mean from an individual raw score and then dividing the difference by the population standard deviation. This conversion process is called standardizing or normalizing .

Standard scores are also called z-values, z-scores, normal scores, and standardized variables. They are most frequently used to compare an observation to a standard normal deviate, though they can be defined without assumptions of normality.

一个样本值与总体平均数的差再除以标准差的过程。衡量一个数距离平均数有多少个标准差。

If the population mean and population standard deviation are known, the standard score of a raw score x is calculated as

\[z=\frac{x- \mu }{\sigma}\]

\(\mu\) is the mean of the population

\(\sigma\) is the standard deviation of the population

The absolute value of z represents the distance between the raw score and the population mean in units of the standard deviation. z is negative when the raw score is below the mean, positive when above.

Calculating z using this formula requires the population mean and the population standard deviation, not the sample mean or sample deviation. But knowing the true mean and standard deviation of a population is often unrealistic except in cases such as standardized testing, where the entire population is measured.

When the population mean and the population standard deviation are unknown, the standard score may be calculated using the sample mean and sample standard deviation as estimates of the population values.

In these cases, the z score is

\[z=\frac{x-\overline x}{S}\]

where: \(\overline x\) is the mean of the sample,S is the standard deviation of the sample.

z-table

z +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09
0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586
0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55966 0.56360 0.56749 0.57142 0.57535
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774
1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189
1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670
2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169
2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574
2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899
2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158
2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361
2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520
2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643
2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736
2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807
2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861
3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900
3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929
3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950
3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965
3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976
3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983
3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989
3.7 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992
3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995
3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997
4.0 0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99998 0.99998 0.99998 0.99998

示例:

A professor's exam scores are approximately distributed normally with mean 80 and standard deviation 5. Only a cumulative from mean table is available.

\[P(X \le 82)=P(Z \le \frac{82-80}{5}) = P(Z \le 0.40)=0.65542\]

小马哥课堂-统计学-z分数的更多相关文章

  1. 小马哥课堂-统计学-t分布

    T distribution 定义 在概率论和统计学中,学生t-分布(t-distribution),可简称为t分布,用于根据小样本来估计 呈正态分布且方差未知的总体的均值.如果总体方差已知(例如在样 ...

  2. 小马哥课堂-统计学-t分布(2)

    t分布,随着自由度的增加,而逐渐接近于正态分布 #!/usr/bin/env python3 #-*- coding:utf-8 -*- ############################### ...

  3. z分数

    一.公式 计算过程为样本x的值与样本总体平均值的差,再除以标准差. 当以标准差为单位,要统计样本与均值偏离了多少值时,就用此公式.

  4. 地理信息系统 - ArcGIS - 高/低聚类分析工具(High/Low Clustering ---Getis-Ord General G)

    前段时间在学习空间统计相关的知识,于是把ArcGIS里Spatial Statistics工具箱里的工具好好研究了一遍,同时也整理了一些笔记上传分享.这一篇先聊一些基础概念,工具介绍篇随后上传. 空间 ...

  5. ML 07、机器学习中的距离度量

    机器学习算法 原理.实现与实践 —— 距离的度量 声明:本篇文章内容大部分转载于July于CSDN的文章:从K近邻算法.距离度量谈到KD树.SIFT+BBF算法,对内容格式与公式进行了重新整理.同时, ...

  6. 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

    转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...

  7. ML二:NNSearch数据结构--二叉树

    wiki百科:http://zh.wikipedia.org/wiki/%E5%86%B3%E7%AD%96%E6%A0%91%E5%AD%A6%E4%B9%A0 opencv学习笔记--二杈决策树: ...

  8. Genome Sequencing of MuseumSpecimens Reveals Rapid Changes in the Genetic Composition of Honey Bees in California

    文章地址:https://academic.oup.com/gbe/article/10/2/458/4810442#supplementary-data Abstract 在自然生态系统和管理生态系 ...

  9. Python相关分析—一个金融场景的案例实操

    哲学告诉我们:世界是一个普遍联系的有机整体,现象之间客观上存在着某种有机联系,一种现象的发展变化,必然受与之关联的其他现象发展变化的制约与影响,在统计学中,这种依存关系可以分为相关关系和回归函数关系两 ...

随机推荐

  1. win32 打印机api

    ? 4. API之打印函数 AbortDoc 取消一份文档的打印 AbortPrinter 删除与一台打印机关联在一起的缓冲文件 AddForm 为打印机的表单列表添加一个新表单 AddJob 用于获 ...

  2. windows 配置环境变量快捷方式

    在 Windows 设置环境变量 在环境变量中添加软件A的目录: 在命令提示框中(cmd) : 输入 path %path%;C:\A, 按下"Enter". 注意: C:\A是软 ...

  3. 用python生成基于lombok 和 hibernate 生成javabean

    mysql工具类 import pymysql.cursors import sys from contextlib import contextmanager import traceback im ...

  4. nginxtomca负载均衡

    Nginx 是一个高性能的 Web 和反向代理服务器, 它具有有很多非常优越的特性: 作为 Web 服务器:相比 Apache,Nginx 使用更少的资源,支持更多的并发连接,体现更高的效率,这点使 ...

  5. 二十四种设计模式:建造者模式(Builder Pattern)

    建造者模式(Builder Pattern) 介绍将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示. 示例用同样的构建过程创建Sql和Xml的Insert()方法和Get()方 ...

  6. 正规方程 Normal Equation

    正规方程 Normal Equation 前几篇博客介绍了一些梯度下降的有用技巧,特征缩放(详见http://blog.csdn.net/u012328159/article/details/5103 ...

  7. python遍历目录的方法 walk listdir

    这篇文章里描述了这些情况: https://www.cnblogs.com/jiaxin359/p/7324077.html 不用递归的时候,用 listdir 需要递归的时候,用walk

  8. 对REST的理解

    现在标准服务基本都提供REST化的接口了.为了加强对REST的理解,看了这篇文章: http://kb.cnblogs.com/page/186516/ REST架构风格最重要的架构约束有6个: 客户 ...

  9. deferred rendering with msaa

    https://docs.nvidia.com/gameworks/content/gameworkslibrary/graphicssamples/d3d_samples/antialiasedde ...

  10. git中报unable to auto-detect email address

    git commit 时报错: ** Please tell me who you are. Run git config --global user.email "you@example. ...