Standard score(z-分数)

The standard score is the signed number of standard deviations by which the value of an observation or data point differs from the mean value of what is being observed or measured.Observed values above the mean have positive standard scores, while values below the mean have negative standard scores. The standard score is a dimensionless quantity obtained by subtracting the population mean from an individual raw score and then dividing the difference by the population standard deviation. This conversion process is called standardizing or normalizing .

Standard scores are also called z-values, z-scores, normal scores, and standardized variables. They are most frequently used to compare an observation to a standard normal deviate, though they can be defined without assumptions of normality.

一个样本值与总体平均数的差再除以标准差的过程。衡量一个数距离平均数有多少个标准差。

If the population mean and population standard deviation are known, the standard score of a raw score x is calculated as

\[z=\frac{x- \mu }{\sigma}\]

\(\mu\) is the mean of the population

\(\sigma\) is the standard deviation of the population

The absolute value of z represents the distance between the raw score and the population mean in units of the standard deviation. z is negative when the raw score is below the mean, positive when above.

Calculating z using this formula requires the population mean and the population standard deviation, not the sample mean or sample deviation. But knowing the true mean and standard deviation of a population is often unrealistic except in cases such as standardized testing, where the entire population is measured.

When the population mean and the population standard deviation are unknown, the standard score may be calculated using the sample mean and sample standard deviation as estimates of the population values.

In these cases, the z score is

\[z=\frac{x-\overline x}{S}\]

where: \(\overline x\) is the mean of the sample,S is the standard deviation of the sample.

z-table

z +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09
0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586
0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55966 0.56360 0.56749 0.57142 0.57535
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774
1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189
1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670
2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169
2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574
2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899
2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158
2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361
2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520
2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643
2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736
2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807
2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861
3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900
3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929
3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950
3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965
3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976
3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983
3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989
3.7 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992
3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995
3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997
4.0 0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99998 0.99998 0.99998 0.99998

示例:

A professor's exam scores are approximately distributed normally with mean 80 and standard deviation 5. Only a cumulative from mean table is available.

\[P(X \le 82)=P(Z \le \frac{82-80}{5}) = P(Z \le 0.40)=0.65542\]

小马哥课堂-统计学-z分数的更多相关文章

  1. 小马哥课堂-统计学-t分布

    T distribution 定义 在概率论和统计学中,学生t-分布(t-distribution),可简称为t分布,用于根据小样本来估计 呈正态分布且方差未知的总体的均值.如果总体方差已知(例如在样 ...

  2. 小马哥课堂-统计学-t分布(2)

    t分布,随着自由度的增加,而逐渐接近于正态分布 #!/usr/bin/env python3 #-*- coding:utf-8 -*- ############################### ...

  3. z分数

    一.公式 计算过程为样本x的值与样本总体平均值的差,再除以标准差. 当以标准差为单位,要统计样本与均值偏离了多少值时,就用此公式.

  4. 地理信息系统 - ArcGIS - 高/低聚类分析工具(High/Low Clustering ---Getis-Ord General G)

    前段时间在学习空间统计相关的知识,于是把ArcGIS里Spatial Statistics工具箱里的工具好好研究了一遍,同时也整理了一些笔记上传分享.这一篇先聊一些基础概念,工具介绍篇随后上传. 空间 ...

  5. ML 07、机器学习中的距离度量

    机器学习算法 原理.实现与实践 —— 距离的度量 声明:本篇文章内容大部分转载于July于CSDN的文章:从K近邻算法.距离度量谈到KD树.SIFT+BBF算法,对内容格式与公式进行了重新整理.同时, ...

  6. 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

    转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...

  7. ML二:NNSearch数据结构--二叉树

    wiki百科:http://zh.wikipedia.org/wiki/%E5%86%B3%E7%AD%96%E6%A0%91%E5%AD%A6%E4%B9%A0 opencv学习笔记--二杈决策树: ...

  8. Genome Sequencing of MuseumSpecimens Reveals Rapid Changes in the Genetic Composition of Honey Bees in California

    文章地址:https://academic.oup.com/gbe/article/10/2/458/4810442#supplementary-data Abstract 在自然生态系统和管理生态系 ...

  9. Python相关分析—一个金融场景的案例实操

    哲学告诉我们:世界是一个普遍联系的有机整体,现象之间客观上存在着某种有机联系,一种现象的发展变化,必然受与之关联的其他现象发展变化的制约与影响,在统计学中,这种依存关系可以分为相关关系和回归函数关系两 ...

随机推荐

  1. Android内存优化6 了解Android是如何管理App内存

    1, Dalvik & ART Android在4.4之前一直使用的Dalvik虚拟机作为App的运行VM的, 4.4中引入了ART作为开发者备选, 5.0起正式将ART作为默认VM了. 我们 ...

  2. void fun() const{}; const void fun(){}; 和void const fun(){}; 的区别?

    void fun() const{}; const void fun(){}; 和void const fun(){}; 的区别? const void fun(){};和void const fun ...

  3. requests.exceptions.SSLError: hostname '127.0.0.1' doesn't match None

    http://stackoverflow.com/questions/33429453/python-requests-ssl-hostname-doesnt-match-error http://w ...

  4. html之marquee会移动的文字

    该标签不是HTML3.2的一部分,并且只支持MSIE3以后内核,所以如果你使用非IE内核浏览器(如:Netscape)可能无法看到下面一些很有意思的效果 该标签是个容器标签 语法: <marqu ...

  5. Android EditText 状态切换

    不可编辑状态 <EditText                     android:id="@+id/ed_newPwd"                     an ...

  6. C# Meta Programming - Let Your Code Generate Code - Introduction of The Text Template Transformation Toolkit(T4)

    <#@ template language="C#" #> <#@ output extension=".cs" #> <#@ a ...

  7. proxyTable 解决跨域问题

    1.使用 proxyTable(地址映射表)解决跨域问题(即通过设置代理解决跨域问题): 可以通过设置将复杂的url简化,例如我们要请求的地址是api.xxxxxxxx.com/list/1,可以按照 ...

  8. eclipse 编译JAVA 项目导入的WEB项目 无法编译问题

    右击你的项目 选择properties  ---->java Build Path--->Default output folder新建一个classes目录就好了 watermark/2 ...

  9. 调整 firefox 源代码查看器的字体

    默认的 firefox 源代码查看器的字体很不好看,不适合阅读代码.想要修改,又没有发现入口.如何修改呢?实际上在选项里的字体就能改.方法如下: 打开选项页,在字体一栏点击高级,把等宽字体由“宋体”改 ...

  10. fwrite和fread函数的用法小结(转)

    fwrite和fread是以记录为单位的I/O函数,fread和fwrite函数一般用于二进制文件的输入输出. #include <stdio.h> size_t fread(void * ...