Standard score(z-分数)

The standard score is the signed number of standard deviations by which the value of an observation or data point differs from the mean value of what is being observed or measured.Observed values above the mean have positive standard scores, while values below the mean have negative standard scores. The standard score is a dimensionless quantity obtained by subtracting the population mean from an individual raw score and then dividing the difference by the population standard deviation. This conversion process is called standardizing or normalizing .

Standard scores are also called z-values, z-scores, normal scores, and standardized variables. They are most frequently used to compare an observation to a standard normal deviate, though they can be defined without assumptions of normality.

一个样本值与总体平均数的差再除以标准差的过程。衡量一个数距离平均数有多少个标准差。

If the population mean and population standard deviation are known, the standard score of a raw score x is calculated as

\[z=\frac{x- \mu }{\sigma}\]

\(\mu\) is the mean of the population

\(\sigma\) is the standard deviation of the population

The absolute value of z represents the distance between the raw score and the population mean in units of the standard deviation. z is negative when the raw score is below the mean, positive when above.

Calculating z using this formula requires the population mean and the population standard deviation, not the sample mean or sample deviation. But knowing the true mean and standard deviation of a population is often unrealistic except in cases such as standardized testing, where the entire population is measured.

When the population mean and the population standard deviation are unknown, the standard score may be calculated using the sample mean and sample standard deviation as estimates of the population values.

In these cases, the z score is

\[z=\frac{x-\overline x}{S}\]

where: \(\overline x\) is the mean of the sample,S is the standard deviation of the sample.

z-table

z +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +0.09
0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586
0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55966 0.56360 0.56749 0.57142 0.57535
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774
1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189
1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670
2.0 0.97725 0.97778 0.97831 0.97882 0.97932 0.97982 0.98030 0.98077 0.98124 0.98169
2.1 0.98214 0.98257 0.98300 0.98341 0.98382 0.98422 0.98461 0.98500 0.98537 0.98574
2.2 0.98610 0.98645 0.98679 0.98713 0.98745 0.98778 0.98809 0.98840 0.98870 0.98899
2.3 0.98928 0.98956 0.98983 0.99010 0.99036 0.99061 0.99086 0.99111 0.99134 0.99158
2.4 0.99180 0.99202 0.99224 0.99245 0.99266 0.99286 0.99305 0.99324 0.99343 0.99361
2.5 0.99379 0.99396 0.99413 0.99430 0.99446 0.99461 0.99477 0.99492 0.99506 0.99520
2.6 0.99534 0.99547 0.99560 0.99573 0.99585 0.99598 0.99609 0.99621 0.99632 0.99643
2.7 0.99653 0.99664 0.99674 0.99683 0.99693 0.99702 0.99711 0.99720 0.99728 0.99736
2.8 0.99744 0.99752 0.99760 0.99767 0.99774 0.99781 0.99788 0.99795 0.99801 0.99807
2.9 0.99813 0.99819 0.99825 0.99831 0.99836 0.99841 0.99846 0.99851 0.99856 0.99861
3.0 0.99865 0.99869 0.99874 0.99878 0.99882 0.99886 0.99889 0.99893 0.99896 0.99900
3.1 0.99903 0.99906 0.99910 0.99913 0.99916 0.99918 0.99921 0.99924 0.99926 0.99929
3.2 0.99931 0.99934 0.99936 0.99938 0.99940 0.99942 0.99944 0.99946 0.99948 0.99950
3.3 0.99952 0.99953 0.99955 0.99957 0.99958 0.99960 0.99961 0.99962 0.99964 0.99965
3.4 0.99966 0.99968 0.99969 0.99970 0.99971 0.99972 0.99973 0.99974 0.99975 0.99976
3.5 0.99977 0.99978 0.99978 0.99979 0.99980 0.99981 0.99981 0.99982 0.99983 0.99983
3.6 0.99984 0.99985 0.99985 0.99986 0.99986 0.99987 0.99987 0.99988 0.99988 0.99989
3.7 0.99989 0.99990 0.99990 0.99990 0.99991 0.99991 0.99992 0.99992 0.99992 0.99992
3.8 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 0.99995 0.99995
3.9 0.99995 0.99995 0.99996 0.99996 0.99996 0.99996 0.99996 0.99996 0.99997 0.99997
4.0 0.99997 0.99997 0.99997 0.99997 0.99997 0.99997 0.99998 0.99998 0.99998 0.99998

示例:

A professor's exam scores are approximately distributed normally with mean 80 and standard deviation 5. Only a cumulative from mean table is available.

\[P(X \le 82)=P(Z \le \frac{82-80}{5}) = P(Z \le 0.40)=0.65542\]

小马哥课堂-统计学-z分数的更多相关文章

  1. 小马哥课堂-统计学-t分布

    T distribution 定义 在概率论和统计学中,学生t-分布(t-distribution),可简称为t分布,用于根据小样本来估计 呈正态分布且方差未知的总体的均值.如果总体方差已知(例如在样 ...

  2. 小马哥课堂-统计学-t分布(2)

    t分布,随着自由度的增加,而逐渐接近于正态分布 #!/usr/bin/env python3 #-*- coding:utf-8 -*- ############################### ...

  3. z分数

    一.公式 计算过程为样本x的值与样本总体平均值的差,再除以标准差. 当以标准差为单位,要统计样本与均值偏离了多少值时,就用此公式.

  4. 地理信息系统 - ArcGIS - 高/低聚类分析工具(High/Low Clustering ---Getis-Ord General G)

    前段时间在学习空间统计相关的知识,于是把ArcGIS里Spatial Statistics工具箱里的工具好好研究了一遍,同时也整理了一些笔记上传分享.这一篇先聊一些基础概念,工具介绍篇随后上传. 空间 ...

  5. ML 07、机器学习中的距离度量

    机器学习算法 原理.实现与实践 —— 距离的度量 声明:本篇文章内容大部分转载于July于CSDN的文章:从K近邻算法.距离度量谈到KD树.SIFT+BBF算法,对内容格式与公式进行了重新整理.同时, ...

  6. 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法

    转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...

  7. ML二:NNSearch数据结构--二叉树

    wiki百科:http://zh.wikipedia.org/wiki/%E5%86%B3%E7%AD%96%E6%A0%91%E5%AD%A6%E4%B9%A0 opencv学习笔记--二杈决策树: ...

  8. Genome Sequencing of MuseumSpecimens Reveals Rapid Changes in the Genetic Composition of Honey Bees in California

    文章地址:https://academic.oup.com/gbe/article/10/2/458/4810442#supplementary-data Abstract 在自然生态系统和管理生态系 ...

  9. Python相关分析—一个金融场景的案例实操

    哲学告诉我们:世界是一个普遍联系的有机整体,现象之间客观上存在着某种有机联系,一种现象的发展变化,必然受与之关联的其他现象发展变化的制约与影响,在统计学中,这种依存关系可以分为相关关系和回归函数关系两 ...

随机推荐

  1. IntelliJ IDEA的几种常见的快捷键

    在编写代码的时候直接输入psv就会看到一个psvm的提示,此时点击tab键一个main方法就写好了. psvm 也就是public static void main的首字母. 依次还有在方法体内键入f ...

  2. JQuery when

    jQuery.when(deferreds) 参数deferreds,一个或多个延时对象或JS对象,我们初略的认为它就是一个或多个异步请求. 例如: $.when($.ajax("page1 ...

  3. NGUI自适应屏幕分辨率

    unity官方承诺的新ui系统一直没有推出来,我们的UI使用的是原生的OnGUI系统,刚好UI需要改版,索性就想迁到NGUI上面来,于是看了一下NGUI源码,发现NGUI可以大大的降低DrawCall ...

  4. iOS: 工具栏控件UIToolBar和工具栏按钮控件UIBarButtonItem的使用

    一.工具栏控件:UIToolBar:UIView 介绍: ToolBar工具栏是视图View的属性,可以在工具栏上添加工具栏按钮Bar Button Item(可以是自定义的Custom.也可以是系统 ...

  5. http://my.oschina.net/China2012/blog/178655

    http://my.oschina.net/China2012/blog/178655 http://git.oschina.net/huangyong/smart-framework

  6. 【架构】使用OpenStack、AliYun、AWS、Docker打造融合的IAAS、PAAS平台

    GalaxyManager,即平台门户,旨在整合数据中心异构虚拟化资源为统一的资源池,并在资源池上为用户提供各类IAAS.PAAS服务. GitHub:https://github.com/junne ...

  7. 【Web】前台传送JSON格式数据到后台Shell处理

    1.js中的json对象和字符串之间的转化:http://www.oschina.net/code/snippet_175925_6288 代码片段: var obj = JSON.parse(des ...

  8. Hadoop 伪分布式上安装 Hive

    下载地址:点此链接(P.S.下载带bin的安装包) 下载hive后放到虚拟机文件夹内,打开: -bin.tar.gz -C /home/software/ 修改并保存环境配置: gedit /etc/ ...

  9. vue组件属性中字符串如何拼接变量?

    不得不说,对于水平只有jquery的vue初学者来说,vue的图片加载实现确实挺坑的,在文档中也没有看到说明.经过百度之后终于知道了什么情况. 首先: 这样是没问题的: <img src=&qu ...

  10. VB 在Visio 2010 以编程方式创建子进程图

    在2010年Visio以编程方式创建子进程图 Office 2010  https://msdn.microsoft.com/en-us/library/gg650651.aspx   简介: 学习如 ...