hdu6184 Counting Stars 【三元环计数】
题目链接
题解
题意是让我们找出所有的这样的图形:

我们只需要求出每条边分别在多少个三元环中,记为\(x\),再然后以该点为中心的图形数就是\({x \choose 2}\)
所以我们只需找出所有三元环
据说这是一个套路题
我们将所有无向边改为有向边,由度数小的向度数大的连边,度数相同就由编号小的向编号大的
容易发现这样建图一定是一个\(DAG\)
然后我们枚举边,将边的两端点出边的到达的点打上标记,当一个点被打上同一个标记时,就成环了
因为是\(DAG\)容易发现这样找环不会重复
然后就是时间复杂度证明
是\(O(m\sqrt{m})\)的
我们只需证明每个点出度不大于\(\sqrt{m}\)
假设有一个点出度大于\(\sqrt{m}\),那么由建边方式我们至知道出边到达的点度数不比该点小,这样总的边数就大于\(m\)了,不符
所以点的度数是\(O(\sqrt{m})\)的
为什么在\(hdu\)使用\(pair\)会\(CE\) = =
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<utility>
#define Redge(u) for (int k = h[u]; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) (node){a,b}
#define cls(s) memset(s,0,sizeof(s))
#define cp node
#define LL long long int
using namespace std;
const int maxn = 100005,maxm = 200005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
struct node{
int first,second;
};
int h[maxn],ne;
struct EDGE{int to,nxt,id;}ed[maxm];
inline void build(int u,int v,int x){
ed[++ne] = (EDGE){v,h[u],x}; h[u] = ne;
}
int de[maxn],a[maxm],b[maxm],now,n,m,ans[maxm];
cp vis[maxn];
int main(){
while (~scanf("%d%d",&n,&m)){
ne = now = 0;
REP(i,n) vis[i] = mp(0,0),h[i] = de[i] = 0;
REP(i,m){
ans[i] = 0;
a[i] = read(); b[i] = read();
de[a[i]]++; de[b[i]]++;
}
REP(i,m){
if (de[a[i]] > de[b[i]] || (de[a[i]] == de[b[i]] && a[i] > b[i]))
swap(a[i],b[i]);
build(a[i],b[i],i);
}
REP(i,m){
now++;
Redge(a[i]) vis[ed[k].to] = mp(now,ed[k].id);
Redge(b[i]) if (vis[ed[k].to].first == now){
ans[i]++;
ans[ed[k].id]++;
ans[vis[ed[k].to].second]++;
}
}
LL ret = 0;
REP(i,m) if (ans[i] > 1) ret += ans[i] * (ans[i] - 1) / 2;
printf("%lld\n",ret);
}
return 0;
}
hdu6184 Counting Stars 【三元环计数】的更多相关文章
- [hdu 6184 Counting Stars(三元环计数)
hdu 6184 Counting Stars(三元环计数) 题意: 给一张n个点m条边的无向图,问有多少个\(A-structure\) 其中\(A-structure\)满足\(V=(A,B,C, ...
- Codechef SUMCUBE Sum of Cubes 组合、三元环计数
传送门 好久没有做过图论题了-- 考虑\(k\)次方的组合意义,实际上,要求的所有方案中导出子图边数的\(k\)次方,等价于有顺序地选出其中\(k\)条边,计算它们在哪一些图中出现过,将所有方案计算出 ...
- 【BZOJ5332】[SDOI2018]旧试题(数论,三元环计数)
[BZOJ5332][SDOI2018]旧试题(数论,三元环计数) 题面 BZOJ 洛谷 题解 如果只有一个\(\sum\),那么我们可以枚举每个答案的出现次数. 首先约数个数这个东西很不爽,就搞一搞 ...
- loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数
题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...
- BZOJ.5407.girls/CF985G. Team Players(三元环计数+容斥)
题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\), ...
- LOJ2565 SDOI2018 旧试题 莫比乌斯反演、三元环计数
传送门 这道题的思路似乎可以给很多同时枚举三个量的反演题目提供一个很好的启发-- 首先有结论:\(d(ijk) = \sum\limits_{x|i}\sum\limits_{y|j}\sum\lim ...
- HDU6184【Counting Stars】(三元环计数)
题面 传送门 给出一张无向图,求 \(4\) 个点构成两个有公共边的三元环的方案数. 题解 orz余奶奶,orz zzk 首先,如果我们知道经过每条边的三元环个数\(cnt_i\),那么答案就是\(\ ...
- HDU 6184 Counting Stars 经典三元环计数
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6184 题意: n个点m条边的无向图,问有多少个A-structure 其中A-structure满足V ...
- FJWC2019 子图 (三元环计数、四元环计数)
给定 n 个点和 m 条边的一张图和一个值 k ,求图中边数为 k 的联通子图个数 mod 1e9+7. \(n \le 10^5, m \le 2 \times 10^5, 1 \le k \le ...
随机推荐
- http性能测试点滴
WeTest 导读 在服务上线之前,性能测试必不可少.本文主要介绍性能测试的流程,需要关注的指标,性能测试工具apache bench的使用,以及常见的坑. 什么是性能测试 性能测试是通过自动化的测试 ...
- 如何设置虚拟化的centos内、外网络通畅
首先要去确定你的本机(本地物理机)是通过以太网(插网线)上网的,还是通过wifi上网的.这个很重要. 如果是通过以太网去上网,那么虚拟化出来的系统,网络配置应当选择桥接模式. 当然了,也不一定非要用桥 ...
- django1.11+xadmin的搭建
1.git clone https://github.com/sshwsfc/xadmin.git或者直接下载zip包 2..在项目根目录下建一个extra_apps的包,将xadmin源码包存放在里 ...
- Java开发工程师(Web方向) - 02.Servlet技术 - 第4章.JSP
第4章--JSP JSP JSP(Java Server Pages) - 中文名:Java服务器页面 动态网页技术标准 JSP = Html + Java + JSP tags 在服务器端执行,返回 ...
- lintcode 二叉树前序遍历
二叉树的前序遍历 给出一棵二叉树,返回其节点值的前序遍历. 您在真实的面试中是否遇到过这个题? Yes 样例 给出一棵二叉树 {1,#,2,3}, 1 \ 2 / 3 返回 [1,2,3]. / ...
- 《Effective C++》读书笔记 条款03 尽可能使用const 使代码更加健壮
如果你对const足够了解,只需记住以下结论即可: 将某些东西声明为const可帮助编译器侦测出错误用法,const可被施加于任何作用于内的对象.函数参数.函数返回类型.成员函数本体. 编译器强制实施 ...
- css多行文本溢出显示省略号(…)
text-overflow:ellipsis属性可以实现单行文本的溢出显示省略号(…).但部分浏览器还需要加宽度width属性. css代码: overflow: hidden; text-overf ...
- SIFT特征原理与理解
SIFT特征原理与理解 SIFT(Scale-invariant feature transform)尺度不变特征变换 SIFT是一种用来侦测和描述影像中局部性特征的算法,它在空间尺度中寻找极值点,并 ...
- 使用树莓派实现(山寨)高清视频叠加(HDMI OSD)
项目需要在HDMI上叠加一些字符包括汉字和数值,要求不能使用台式机,本身也没有HDMI采集卡驱动开发能力,所以通过海思的HDMI编码器将HDMI编码为h.264网络视频流,然后通过树莓派解码显示,做字 ...
- MyBatis 插件 : 打印 SQL 及其执行时间
Plugins 摘一段来自MyBatis官方文档的文字. MyBatis允许你在某一点拦截已映射语句执行的调用.默认情况下,MyBatis允许使用插件来拦截方法调用: Executor(update. ...