题目链接

hdu6184

题解

题意是让我们找出所有的这样的图形:

我们只需要求出每条边分别在多少个三元环中,记为\(x\),再然后以该点为中心的图形数就是\({x \choose 2}\)

所以我们只需找出所有三元环

据说这是一个套路题

我们将所有无向边改为有向边,由度数小的向度数大的连边,度数相同就由编号小的向编号大的

容易发现这样建图一定是一个\(DAG\)

然后我们枚举边,将边的两端点出边的到达的点打上标记,当一个点被打上同一个标记时,就成环了

因为是\(DAG\)容易发现这样找环不会重复

然后就是时间复杂度证明

是\(O(m\sqrt{m})\)的

我们只需证明每个点出度不大于\(\sqrt{m}\)

假设有一个点出度大于\(\sqrt{m}\),那么由建边方式我们至知道出边到达的点度数不比该点小,这样总的边数就大于\(m\)了,不符

所以点的度数是\(O(\sqrt{m})\)的

为什么在\(hdu\)使用\(pair\)会\(CE\) = =

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<utility>
#define Redge(u) for (int k = h[u]; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) (node){a,b}
#define cls(s) memset(s,0,sizeof(s))
#define cp node
#define LL long long int
using namespace std;
const int maxn = 100005,maxm = 200005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
struct node{
int first,second;
};
int h[maxn],ne;
struct EDGE{int to,nxt,id;}ed[maxm];
inline void build(int u,int v,int x){
ed[++ne] = (EDGE){v,h[u],x}; h[u] = ne;
}
int de[maxn],a[maxm],b[maxm],now,n,m,ans[maxm];
cp vis[maxn];
int main(){
while (~scanf("%d%d",&n,&m)){
ne = now = 0;
REP(i,n) vis[i] = mp(0,0),h[i] = de[i] = 0;
REP(i,m){
ans[i] = 0;
a[i] = read(); b[i] = read();
de[a[i]]++; de[b[i]]++;
}
REP(i,m){
if (de[a[i]] > de[b[i]] || (de[a[i]] == de[b[i]] && a[i] > b[i]))
swap(a[i],b[i]);
build(a[i],b[i],i);
}
REP(i,m){
now++;
Redge(a[i]) vis[ed[k].to] = mp(now,ed[k].id);
Redge(b[i]) if (vis[ed[k].to].first == now){
ans[i]++;
ans[ed[k].id]++;
ans[vis[ed[k].to].second]++;
}
}
LL ret = 0;
REP(i,m) if (ans[i] > 1) ret += ans[i] * (ans[i] - 1) / 2;
printf("%lld\n",ret);
}
return 0;
}

hdu6184 Counting Stars 【三元环计数】的更多相关文章

  1. [hdu 6184 Counting Stars(三元环计数)

    hdu 6184 Counting Stars(三元环计数) 题意: 给一张n个点m条边的无向图,问有多少个\(A-structure\) 其中\(A-structure\)满足\(V=(A,B,C, ...

  2. Codechef SUMCUBE Sum of Cubes 组合、三元环计数

    传送门 好久没有做过图论题了-- 考虑\(k\)次方的组合意义,实际上,要求的所有方案中导出子图边数的\(k\)次方,等价于有顺序地选出其中\(k\)条边,计算它们在哪一些图中出现过,将所有方案计算出 ...

  3. 【BZOJ5332】[SDOI2018]旧试题(数论,三元环计数)

    [BZOJ5332][SDOI2018]旧试题(数论,三元环计数) 题面 BZOJ 洛谷 题解 如果只有一个\(\sum\),那么我们可以枚举每个答案的出现次数. 首先约数个数这个东西很不爽,就搞一搞 ...

  4. loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数

    题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...

  5. BZOJ.5407.girls/CF985G. Team Players(三元环计数+容斥)

    题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\), ...

  6. LOJ2565 SDOI2018 旧试题 莫比乌斯反演、三元环计数

    传送门 这道题的思路似乎可以给很多同时枚举三个量的反演题目提供一个很好的启发-- 首先有结论:\(d(ijk) = \sum\limits_{x|i}\sum\limits_{y|j}\sum\lim ...

  7. HDU6184【Counting Stars】(三元环计数)

    题面 传送门 给出一张无向图,求 \(4\) 个点构成两个有公共边的三元环的方案数. 题解 orz余奶奶,orz zzk 首先,如果我们知道经过每条边的三元环个数\(cnt_i\),那么答案就是\(\ ...

  8. HDU 6184 Counting Stars 经典三元环计数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6184 题意: n个点m条边的无向图,问有多少个A-structure 其中A-structure满足V ...

  9. FJWC2019 子图 (三元环计数、四元环计数)

    给定 n 个点和 m 条边的一张图和一个值 k ,求图中边数为 k 的联通子图个数 mod 1e9+7. \(n \le 10^5, m \le 2 \times 10^5, 1 \le k \le ...

随机推荐

  1. 写了个汉字转G代码工具,无描边的那种,市面上没有类似的小软件

    学了不少G代码知识, 将公司废旧的三轴非标设备改造成了一个雕刻机,市面上的小软件不好用 网上下的软件有描边的,字体刻起来太粗,这个比较好用,看图应该都能明白吧, 就自己写了个,“少于150字的随笔不允 ...

  2. 「日常训练&知识学习」树的直径(POJ-1849,Two)

    题意 一个城市由节点和连接节点的街道组成,街道是双向的. 此刻大雪覆盖了这个城市,市长确定了一些街道要将它们清扫干净,这些街道保证所有的节点可以通过它们连通而且街道数目尽可能小. 现有两台相同的扫雪机 ...

  3. MySQL日期比较

    假如有个表product有个字段add_time,它的数据类型为datetime,有人可能会这样写sql: select * from product where add_time = '2013-0 ...

  4. beauifulsoup模块的介绍

    01   爬虫基础知识介绍 相关库:1.requests,re  2.BeautifulSoup   3.hackhttp 使用requests发起get,post请求,获取状态码,内容: 使用re匹 ...

  5. JDK11安装后,环境变量的坑

    安装了最新的JDK11,安装完后设置环境变量,打开CMD,没生效 检查了3遍,都没发现问题,在PATH中将JAVA设置移到第一也不行 最后偶然发现,在点击如图右下的‘编辑文本’,用文本方式编辑时,发现 ...

  6. ionic LoadingController 模块使用

    html 代码: <ion-header> <ion-navbar> <ion-title>Loading</ion-title> </ion-n ...

  7. simhash和minhash实现理解

    文本相似度算法 minhash minhash 1. 把文档A分词形成分词向量L 2. 使用K个hash函数,然后每个hash将L里面的分词分别进行hash,然后得到K个被hash过的集合 3. 分别 ...

  8. POJ 3415 Common Substrings(后缀数组)

    Description A substring of a string T is defined as: T(i, k)=TiTi+1...Ti+k-1, 1≤i≤i+k-1≤|T|. Given t ...

  9. win7 个人电脑 IIS7服务器(web服务器) 同一局域网下均可访问本机网页

    建立web服务器: 1.控制面板-->程序-->打开或关闭windows功能-->internet信息服务全部打钩,确定即可. 访问网页: 1.C:\inetpub\wwwroot\ ...

  10. BluetoothServerSocket详解

    一. BluetoorhServerSocket简介 1. 继承关系 public final class BluetoothServerSocket extends Object implement ...