HUAS 1482 lsy的后宫(DP+矩阵快速幂)
这道题的DP是很好想的,令dp[i][j]表示第i个位置摆第j种妹子的方法数,j为0表示不摆妹子的方法数。
dp[i][j]=sigma(dp[i-1][k])(s[j][k]!='1').容易看出这是个递推式,于是可以用矩阵快速幂加速DP转移。
复杂度O(m^3*logn).
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi 3.1415926535
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... struct Matrix{LL matrix[N][N];}a, sa, unit, kk;
char s[N][N];
int n, m; Matrix Mul(Matrix a, Matrix b) //矩阵乘法(%MOD)
{
Matrix c;
FOR(i,,m) FOR(j,,m) {
c.matrix[i][j]=;
FOR(l,,m) c.matrix[i][j]+=(a.matrix[i][l]*b.matrix[l][j])%MOD;
c.matrix[i][j]%=MOD;
}
return c;
}
Matrix Cal(int exp) //矩阵快速幂
{
Matrix p=a, q=unit;
if (exp==) return q;
while (exp!=) {
if (exp&) exp--, q=Mul(p,q);
else exp>>=, p=Mul(p,p);
}
return Mul(p,q);
}
void init(){
FOR(i,,m) unit.matrix[i][i]=kk.matrix[][i]=;
FOR(i,,m) a.matrix[i][]=a.matrix[][i]=;
FOR(i,,m) FOR(j,,m) if (s[i][j]=='') a.matrix[j][i]=;
}
int main ()
{
LL ans=;
scanf("%d%d",&n,&m);
FOR(i,,m) scanf("%s",s[i]+);
init();
sa=Cal(n-); sa=Mul(kk,sa);
FOR(i,,m) ans=(ans+sa.matrix[][i])%MOD;
printf("%lld\n",ans);
return ;
}
HUAS 1482 lsy的后宫(DP+矩阵快速幂)的更多相关文章
- Codeforces 621E Wet Shark and Block【dp + 矩阵快速幂】
题意: 有b个blocks,每个blocks都有n个相同的0~9的数字,如果从第一个block选1,从第二个block选2,那么就构成12,问对于给定的n,b有多少种构成方案使最后模x的余数为k. 分 ...
- [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)
[BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...
- bnuoj 34985 Elegant String DP+矩阵快速幂
题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...
- HDU 5434 Peace small elephant 状压dp+矩阵快速幂
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant Accepts: 38 Submissions: ...
- 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂
[题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...
- 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂
[题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...
- BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*
BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...
- codeforces E. Okabe and El Psy Kongroo(dp+矩阵快速幂)
题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y- ...
- HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)
传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...
随机推荐
- python基础的一些知识点
ord 将字符转换为ASCIIchr 将ASCII转换为字符 元组不可修改,当只有一个元素时,要添加一个逗号集合不可修改,元素无序,不能重复 列表.元组.字典都是可迭代对象,就是可以遍历的对象多层循环 ...
- 【SQLSERVER】从数据库文件mdf中拆分ndf的方法和利弊
一.数据文件格式 SQLSERVER中,数据库的文件后缀有3种:mdf.ndf.ldf. 如下图所示,DW_TEST.mdf.DW_TEST_HIS.ndf.DW_TEST.ldf 属于同一个数据库T ...
- Android Stadio配置了gralde的本地路径,但是windos 命令行还是会下载gradle
如下图: 已经在stadio 里面设置了gradle 的路径,但是在cmd 命令行里面不会去用这个路径. 解决方案:需要在环境变量里面设置一个gradle home GRADLE_USER_HOME ...
- Ruby 基础教程1-3
1.命令行参数ARGV[] 2.文件读取 file=File.open(filename) text=file.read print text file.close 一次读取所有内容耗内存,耗 ...
- explain获得使用的key的数据
bool Explain_join::explain_key_and_len() { if (tab->ref.key_parts) return explain_key_and_len_ind ...
- 「日常训练」 Longest Run on a Snowboard (UVA-10285)
题意 其实就是一条二维的LIS,但是还是做的一愣一愣的,多努力. 考虑$dp[i][j]$为从(i,j)出发的二维LIS的最大值,那么$dp[i][j]=max\{dp[i−di[k]][j−dj[k ...
- Linux命令应用大词典-第25章 备份与还原
25.1 mkisofs:创建ISO9660/Joliet/hfs文件系统
- JAVA 面试须知
本篇文章会对面试中常遇到的Java技术点进行全面深入的总结,帮助我们在面试中更加得心应手,不参加面试的同学也能够借此机会梳理一下自己的知识体系,进行查漏补缺. 1. Java中的原始数据类型都有哪些, ...
- (原) MaterialEditor部- UmateriaEditor中 Node编译过程和使用(2)
@白袍小道 转载说明原处 插件同步在GITHUB: DaoZhang_XDZ 需求: 1.梳理FexpressionInput和Output的编译和链接(套路和逻辑目的) 2.如何做到节点编译 ...
- centos端口管理
centos 6.5 ###############配置filter表防火墙############### #清除预设表filter中的所有规则链的规则iptables -F #清除预设表filter ...