这道题的DP是很好想的,令dp[i][j]表示第i个位置摆第j种妹子的方法数,j为0表示不摆妹子的方法数。

dp[i][j]=sigma(dp[i-1][k])(s[j][k]!='1').容易看出这是个递推式,于是可以用矩阵快速幂加速DP转移。

复杂度O(m^3*logn).

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi 3.1415926535
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... struct Matrix{LL matrix[N][N];}a, sa, unit, kk;
char s[N][N];
int n, m; Matrix Mul(Matrix a, Matrix b) //矩阵乘法(%MOD)
{
Matrix c;
FOR(i,,m) FOR(j,,m) {
c.matrix[i][j]=;
FOR(l,,m) c.matrix[i][j]+=(a.matrix[i][l]*b.matrix[l][j])%MOD;
c.matrix[i][j]%=MOD;
}
return c;
}
Matrix Cal(int exp) //矩阵快速幂
{
Matrix p=a, q=unit;
if (exp==) return q;
while (exp!=) {
if (exp&) exp--, q=Mul(p,q);
else exp>>=, p=Mul(p,p);
}
return Mul(p,q);
}
void init(){
FOR(i,,m) unit.matrix[i][i]=kk.matrix[][i]=;
FOR(i,,m) a.matrix[i][]=a.matrix[][i]=;
FOR(i,,m) FOR(j,,m) if (s[i][j]=='') a.matrix[j][i]=;
}
int main ()
{
LL ans=;
scanf("%d%d",&n,&m);
FOR(i,,m) scanf("%s",s[i]+);
init();
sa=Cal(n-); sa=Mul(kk,sa);
FOR(i,,m) ans=(ans+sa.matrix[][i])%MOD;
printf("%lld\n",ans);
return ;
}

HUAS 1482 lsy的后宫(DP+矩阵快速幂)的更多相关文章

  1. Codeforces 621E Wet Shark and Block【dp + 矩阵快速幂】

    题意: 有b个blocks,每个blocks都有n个相同的0~9的数字,如果从第一个block选1,从第二个block选2,那么就构成12,问对于给定的n,b有多少种构成方案使最后模x的余数为k. 分 ...

  2. [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂)

    [BZOJ1009] [HNOI2008] GT考试(KMP+dp+矩阵快速幂) 题面 阿申准备报名参加GT考试,准考证号为N位数X1X2-.Xn,他不希望准考证号上出现不吉利的数字.他的不吉利数学A ...

  3. bnuoj 34985 Elegant String DP+矩阵快速幂

    题目链接:http://acm.bnu.edu.cn/bnuoj/problem_show.php?pid=34985 We define a kind of strings as elegant s ...

  4. HDU 5434 Peace small elephant 状压dp+矩阵快速幂

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant  Accepts: 38  Submissions: ...

  5. 【BZOJ】2004: [Hnoi2010]Bus 公交线路 状压DP+矩阵快速幂

    [题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n ...

  6. 【BZOJ】4861: [Beijing2017]魔法咒语 AC自动机+DP+矩阵快速幂

    [题意]给定n个原串和m个禁忌串,要求用原串集合能拼出的不含禁忌串且长度为L的串的数量.(60%)n,m<=50,L<=100.(40%)原串长度为1或2,L<=10^18. [算法 ...

  7. BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*

    BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...

  8. codeforces E. Okabe and El Psy Kongroo(dp+矩阵快速幂)

    题目链接:http://codeforces.com/contest/821/problem/E 题意:我们现在位于(0,0)处,目标是走到(K,0)处.每一次我们都可以从(x,y)走到(x+1,y- ...

  9. HUST 1569(Burnside定理+容斥+数位dp+矩阵快速幂)

    传送门:Gift 题意:由n(n<=1e9)个珍珠构成的项链,珍珠包含幸运数字(有且仅由4或7组成),取区间[L,R]内的数字,相邻的数字不能相同,且旋转得到的相同的数列为一种,为最终能构成多少 ...

随机推荐

  1. vue-router核心概念

    vue用来实现SPA的插件 使用vue-router 1. 创建路由器: router/index.js new VueRouter({ routes: [ { // 一般路由 path: '/abo ...

  2. 成都Uber优步司机奖励政策(3月29日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. DSP5509项目之用FFT识别钢琴音调(1)

    1. 其实这个项目难点在于,能不能采集到高质量的钢琴音调.先看一下FFT相关程序. FFT 并不是一种新的变换,它是离散傅立叶变换(DFT)的一种快速算法.由于我们在计算 DFT 时一次复数乘法需用四 ...

  4. dsp5509的中断系统

    1. DSP5509有32个中断,中断分为软件中断和硬件中断,同时软件中断不可以屏蔽.软件中断由指令触发.55x在中断时DSP会自动保存ST0_55.ST1_55.ST2_55三个寄存器. 2. 其中 ...

  5. WPF Style Setter use a TemplateBinding?

    <Style TargetType="{x:Type local:ImageButton}"> <Setter Property="Horizontal ...

  6. c++ reference can not be reassigned

    #include <iostream> using namespace std; int main () { // declare simple variables int i; int ...

  7. 提权基础-----mysql-udf提权

    1.总结关于udf提权方法 通过弱口令,爆破,网站配置文件等方式得到mysql数据库帐号密码,---还要能外连 (1).将udf.dll代码的16进制数声明给my_udf_a变量 set @my_ud ...

  8. WEB安全--高级sql注入,爆错注入,布尔盲注,时间盲注

    1.爆错注入 什么情况想能使用报错注入------------页面返回连接错误信息 常用函数 updatexml()if...floorextractvalue updatexml(,concat() ...

  9. Linux命令应用大词典-第7章 字符串、文件和命令查找

    7.1 grep:字符串.文件和命令的查找 7.2 egrep:在文件或标准输入中查找模式 7.3 fgrep:在每个文件或是标准输入中查找模式 7.4 find:列出文件系统内符合条件的文件 7.5 ...

  10. 单词 (Play on Words UVA - 10129 )

    题目描述: 原题:https://vjudge.net/problem/UVA-10129 题目思路: 1.明显是判断欧拉路径 2.欧拉路径的两个条件 a.图连通 b.至多为两个奇点,且一个为起点一个 ...