Increasing Speed Limits

Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 481    Accepted Submission(s): 245

Problem Description
You were driving along a highway when you got caught by the road police for speeding. It turns out that they\'ve been following you, and they were amazed by the fact that you were accelerating the whole time without using the brakes! And now you desperately need an excuse to explain that.

You've decided that it would be reasonable to say "all the speed limit signs I saw were in increasing order, that\'s why I've been accelerating". The police officer laughs in reply, and tells you all the signs that are placed along the segment of highway you drove, and says that's unlikely that you were so lucky just to see some part of these signs that were in increasing order.

Now you need to estimate that likelihood, or, in other words, find out how many different subsequences of the given sequence are strictly increasing. The empty subsequence does not count since that would imply you didn't look at any speed limits signs at all!

For example, (1, 2, 5) is an increasing subsequence of (1, 4, 2, 3, 5, 5), and we count it twice because there are two ways to select (1, 2, 5) from the list.

 
Input
The first line of input gives the number of cases, N. N test cases follow. The first line of each case contains n, m, X, Y and Z each separated by a space. n will be the length of the sequence of speed limits. m will be the length of the generating array A. The next m lines will contain the m elements of A, one integer per line (from A[0] to A[m-1]).

Using A, X, Y and Z, the following pseudocode will print the speed limit sequence in order. mod indicates the remainder operation.

for i = 0 to n-1
print A[i mod m]
A[i mod m] = (X * A[i mod m] + Y * (i + 1)) mod Z

Note: The way that the input is generated has nothing to do with the intended solution and exists solely to keep the size of the input files low.

1 ≤ m ≤ n ≤ 500 000

 
Output
For each test case you should output one line containing "Case #T: S" (quotes for clarity) where T is the number of the test case and S is the number of non-empty increasing subsequences mod 1 000 000 007.
 
Sample Input
2
5 5 0 0 5
1
2
1
2
3
6
2 2 1000000000 6
1
2
 
Sample Output
Case #1: 15
Case #2: 13
 
Source
 
Recommend
gaojie   |   We have carefully selected several similar problems for you:  3450 2227 2642 1255 3743 
 

在奔溃的边缘a了,搞了近一天= =!!

题意开始也没弄懂,后来知道是由一个数组推出目标数组(s[]):

for(int i=0;i<m;i++)
    scanf("%d",&a[i]);
for(int i=0;i<n;i++){
    s[i]=a[i%m];
    t[i]=s[i]; //用于离散化处理
    a[i%m]=(x*a[i%m]+y*(i+1))%z;
}

然后离散化处理:

sort(t,t+n);
cnt=0;
a[++cnt]=t[0];
for(int i=1;i<n;i++){
    if(t[i]!=t[i-1]){
        a[++cnt]=t[i];
    }
}

此处是简单的处理,实际运用则是在二分查找里(search());

最后处理目标数组s[],由dp思想可以从前状态推出后状态!然后用树状数组实现,时间复杂度就是O(n*lgn),贡献了了好多次TLE,一开始用map,后来才换成二分,map耗时较大,明白了简单的不一定好,出来混迟早要还的!!

 //2218MS    8136K    1668 B    G++
#include<iostream>
#include<map>
#include<algorithm>
#define M 1000000007
#define N 500005
#define ll __int64
using namespace std;
int c[N],a[N],t[N],s[N];
int cnt;
inline int lowbit(int k)
{
return (-k)&k;
}
inline void update(int k,int detal)
{
for(int i=k;i<=cnt;i+=lowbit(i)){
c[i]+=detal;
if(c[i]>=M) c[i]%=M;
}
}
inline int getsum(int k)
{
int s=;
for(int i=k;i>;i-=lowbit(i)){
s+=c[i];
if(s>=M) s%=M;
}
return s;
}
inline int search(int a0[],int m)
{
int l=,r=cnt,mid;
while(l<r){
mid=(l+r)>>;
if(a0[mid]<m) l=mid+;
else r=mid;
}
return l;
}
int main(void)
{
int cas,n,m,k=;
ll x,y,z;
scanf("%d",&cas);
while(cas--)
{
memset(c,,sizeof(c));
scanf("%d%d%I64d%I64d%I64d",&n,&m,&x,&y,&z);
for(int i=;i<m;i++)
scanf("%d",&a[i]);
for(int i=;i<n;i++){
s[i]=a[i%m];
t[i]=s[i];
a[i%m]=(x*a[i%m]+y*(i+))%z;
}
sort(t,t+n);
cnt=;
//map<int,int>Map;
//Map[t[0]]=++cnt;
a[++cnt]=t[];
for(int i=;i<n;i++){
if(t[i]!=t[i-]){
//Map[t[i]]=++cnt;
a[++cnt]=t[i];
}
}
ll ans=;
update(,);
for(int i=;i<n;i++){
int id=search(a,s[i]); //离散化的二分查找
int temp=getsum(id);
ans+=temp; //dp思想
if(ans>=M) ans%=M;
update(id+,temp);
}
printf("Case #%d: %I64d\n",k++,ans);
}
return ;
}

hdu 3030 Increasing Speed Limits (离散化+树状数组+DP思想)的更多相关文章

  1. HDU 3030 - Increasing Speed Limits

    Problem Description You were driving along a highway when you got caught by the road police for spee ...

  2. HDU 6318 - Swaps and Inversions - [离散化+树状数组求逆序数][杭电2018多校赛2]

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=6318 Problem Description Long long ago, there was an ...

  3. HDU 5792 World is Exploding (离散化+树状数组)

    题意:给定 n 个数,让你数出 a < b && c < d && a != b != c != d  && Aa < Ab & ...

  4. HDU 5862 Counting Intersections(离散化 + 树状数组)

    Counting Intersections Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  5. HDU 6447 YJJ’s Salesman (树状数组 + DP + 离散)

    题意: 二维平面上N个点,从(0,0)出发到(1e9,1e9),每次只能往右,上,右上三个方向移动, 该N个点只有从它的左下方格点可达,此时可获得收益.求该过程最大收益. 分析:我们很容易就可以想到用 ...

  6. HDU 5862 Counting Intersections(离散化+树状数组)

    HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...

  7. hdu 3015 Disharmony Trees (离散化+树状数组)

    Disharmony Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. HDU 6318.Swaps and Inversions-求逆序对-线段树 or 归并排序 or 离散化+树状数组 (2018 Multi-University Training Contest 2 1010)

    6318.Swaps and Inversions 这个题就是找逆序对,然后逆序对数*min(x,y)就可以了. 官方题解:注意到逆序对=交换相邻需要交换的次数,那么输出 逆序对个数 即可. 求逆序对 ...

  9. CodeForces 540E - Infinite Inversions(离散化+树状数组)

    花了近5个小时,改的乱七八糟,终于A了. 一个无限数列,1,2,3,4,...,n....,给n个数对<i,j>把数列的i,j两个元素做交换.求交换后数列的逆序对数. 很容易想到离散化+树 ...

随机推荐

  1. 使用OpenLayers发布地图

    OpenLayers是用于制作交互式Web地图的开源客户端JavaScript类库,制作的地图几乎可以在所有的浏览器中查看.因为是客户端类库,它不需要特殊的服务器端软件或配置,甚至不用下载任何东西就可 ...

  2. 成都Uber优步司机奖励政策(2月24日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. 成都Uber优步司机奖励政策(2月18日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  4. CLR via c#读书笔记五:方法

    注:书本第8章:方法 实例构造器和类(引用类型) 构造器方法在“方法定义元数据表”中始终叫做.ctor(constructor的简称). 构造引用类型的对象,在调用类型的实例构造器之前,为对象分配的内 ...

  5. 阿里otter使用问题汇总

    最近在使用otter做为和表从库.(100个分表太难查询了) user_00,user_01...user_99 => user_all 1.问题DDL语句不能执行(exception:setl ...

  6. 使用union

    QUERY: explain extended ) TRACE: { "steps": [ { "join_preparation": { "sele ...

  7. Qt-QML-安卓编译问题

    Qt的强大在于跨平台,但是在某些地方做的还是不好,想我这种白痴,在编译安卓的时候就遇到新的问题,我在PC上面编译没有问题的,跑到安卓上面就会出现问题,我猜测应该是Qt的下面的编译的时候,用的还是旧的安 ...

  8. 【Extremely Basic Words for Listening】word list

    [Extremely Basic Words for Listening]word list updated continuously recite count: 0 careless exercis ...

  9. (Python爬虫05)完善的爬虫学习大纲

  10. TW实习日记:第22天

    今天开发项目的还没完成的功能点,没什么难的,样式复制粘贴,JSON表单配一配,接口调一调,基本就完成了.不过中间在写后台的一些接口时,发现被自己之前写的一些方法给坑了.为什么这样说呢,因为在之前的几个 ...