hdu 3030 Increasing Speed Limits (离散化+树状数组+DP思想)
Increasing Speed Limits
Time Limit: 2000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 481 Accepted Submission(s): 245
You've decided that it would be reasonable to say "all the speed limit signs I saw were in increasing order, that\'s why I've been accelerating". The police officer laughs in reply, and tells you all the signs that are placed along the segment of highway you drove, and says that's unlikely that you were so lucky just to see some part of these signs that were in increasing order.
Now you need to estimate that likelihood, or, in other words, find out how many different subsequences of the given sequence are strictly increasing. The empty subsequence does not count since that would imply you didn't look at any speed limits signs at all!
For example, (1, 2, 5) is an increasing subsequence of (1, 4, 2, 3, 5, 5), and we count it twice because there are two ways to select (1, 2, 5) from the list.
Using A, X, Y and Z, the following pseudocode will print the speed limit sequence in order. mod indicates the remainder operation.
for i = 0 to n-1
print A[i mod m]
A[i mod m] = (X * A[i mod m] + Y * (i + 1)) mod Z
Note: The way that the input is generated has nothing to do with the intended solution and exists solely to keep the size of the input files low.
1 ≤ m ≤ n ≤ 500 000
2
1
2
3
6
2
在奔溃的边缘a了,搞了近一天= =!!
题意开始也没弄懂,后来知道是由一个数组推出目标数组(s[]):
for(int i=0;i<m;i++)
scanf("%d",&a[i]);
for(int i=0;i<n;i++){
s[i]=a[i%m];
t[i]=s[i]; //用于离散化处理
a[i%m]=(x*a[i%m]+y*(i+1))%z;
}
然后离散化处理:
sort(t,t+n);
cnt=0;
a[++cnt]=t[0];
for(int i=1;i<n;i++){
if(t[i]!=t[i-1]){
a[++cnt]=t[i];
}
}
此处是简单的处理,实际运用则是在二分查找里(search());
最后处理目标数组s[],由dp思想可以从前状态推出后状态!然后用树状数组实现,时间复杂度就是O(n*lgn),贡献了了好多次TLE,一开始用map,后来才换成二分,map耗时较大,明白了简单的不一定好,出来混迟早要还的!!
//2218MS 8136K 1668 B G++
#include<iostream>
#include<map>
#include<algorithm>
#define M 1000000007
#define N 500005
#define ll __int64
using namespace std;
int c[N],a[N],t[N],s[N];
int cnt;
inline int lowbit(int k)
{
return (-k)&k;
}
inline void update(int k,int detal)
{
for(int i=k;i<=cnt;i+=lowbit(i)){
c[i]+=detal;
if(c[i]>=M) c[i]%=M;
}
}
inline int getsum(int k)
{
int s=;
for(int i=k;i>;i-=lowbit(i)){
s+=c[i];
if(s>=M) s%=M;
}
return s;
}
inline int search(int a0[],int m)
{
int l=,r=cnt,mid;
while(l<r){
mid=(l+r)>>;
if(a0[mid]<m) l=mid+;
else r=mid;
}
return l;
}
int main(void)
{
int cas,n,m,k=;
ll x,y,z;
scanf("%d",&cas);
while(cas--)
{
memset(c,,sizeof(c));
scanf("%d%d%I64d%I64d%I64d",&n,&m,&x,&y,&z);
for(int i=;i<m;i++)
scanf("%d",&a[i]);
for(int i=;i<n;i++){
s[i]=a[i%m];
t[i]=s[i];
a[i%m]=(x*a[i%m]+y*(i+))%z;
}
sort(t,t+n);
cnt=;
//map<int,int>Map;
//Map[t[0]]=++cnt;
a[++cnt]=t[];
for(int i=;i<n;i++){
if(t[i]!=t[i-]){
//Map[t[i]]=++cnt;
a[++cnt]=t[i];
}
}
ll ans=;
update(,);
for(int i=;i<n;i++){
int id=search(a,s[i]); //离散化的二分查找
int temp=getsum(id);
ans+=temp; //dp思想
if(ans>=M) ans%=M;
update(id+,temp);
}
printf("Case #%d: %I64d\n",k++,ans);
}
return ;
}
hdu 3030 Increasing Speed Limits (离散化+树状数组+DP思想)的更多相关文章
- HDU 3030 - Increasing Speed Limits
Problem Description You were driving along a highway when you got caught by the road police for spee ...
- HDU 6318 - Swaps and Inversions - [离散化+树状数组求逆序数][杭电2018多校赛2]
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=6318 Problem Description Long long ago, there was an ...
- HDU 5792 World is Exploding (离散化+树状数组)
题意:给定 n 个数,让你数出 a < b && c < d && a != b != c != d && Aa < Ab & ...
- HDU 5862 Counting Intersections(离散化 + 树状数组)
Counting Intersections Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/ ...
- HDU 6447 YJJ’s Salesman (树状数组 + DP + 离散)
题意: 二维平面上N个点,从(0,0)出发到(1e9,1e9),每次只能往右,上,右上三个方向移动, 该N个点只有从它的左下方格点可达,此时可获得收益.求该过程最大收益. 分析:我们很容易就可以想到用 ...
- HDU 5862 Counting Intersections(离散化+树状数组)
HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...
- hdu 3015 Disharmony Trees (离散化+树状数组)
Disharmony Trees Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 6318.Swaps and Inversions-求逆序对-线段树 or 归并排序 or 离散化+树状数组 (2018 Multi-University Training Contest 2 1010)
6318.Swaps and Inversions 这个题就是找逆序对,然后逆序对数*min(x,y)就可以了. 官方题解:注意到逆序对=交换相邻需要交换的次数,那么输出 逆序对个数 即可. 求逆序对 ...
- CodeForces 540E - Infinite Inversions(离散化+树状数组)
花了近5个小时,改的乱七八糟,终于A了. 一个无限数列,1,2,3,4,...,n....,给n个数对<i,j>把数列的i,j两个元素做交换.求交换后数列的逆序对数. 很容易想到离散化+树 ...
随机推荐
- 北京Uber优步司机奖励政策(1月26日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- Spring的cache缓存介绍
从3.1开始,Spring引入了对Cache的支持.其使用方法和原理都类似于Spring对事务管理的支持.Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该 ...
- 代码混淆防止APP被反编译指南
本文来自网易云社区 安卓App安全包含很多内容,包括混淆代码.整体Dex加固.拆分 Dex 加固.虚拟机加固等方面.事实上,这些内容也是国内近几年Android App安全保护的一种主要趋势. 混淆代 ...
- 如何用istio实现应用的灰度发布
Istio为用户提供基于微服务的流量治理能力.Istio允许用户按照标准制定一套流量分发规则,并且无侵入的下发到实例中,平滑稳定的实现灰度发布功能. 基于华为云的Istio服务网格技术,使得灰度发布全 ...
- go通过第三方库 mahonia gbk 转utf8
go get github.com/axgle/mahonia dec := mahonia.NewDecoder("GBK")ret:=dec.ConvertString(res ...
- CodeForces - 1059D(二分+误差)
链接:CodeForces - 1059D 题意:给出笛卡尔坐标系上 n 个点,求与 x 轴相切且覆盖了所有给出点的圆的最小半径. 题解:二分半径即可.判断:假设当前二分到的半径是 R ,因为要和 x ...
- 硬盘基础知识&&分区
学习记录的笔记,虽然毫无章法 硬盘基础知识 磁盘的物理组成 如下图所示: 有关磁盘物理知识的详细介绍请看硬盘的存储原理和内部架构这篇博文 硬盘接口类型 IDE SATA SCSI SAS 光纤通道 I ...
- lintcode373 奇偶分割数组
奇偶分割数组 分割一个整数数组,使得奇数在前偶数在后. 您在真实的面试中是否遇到过这个题? Yes 样例 给定 [1, 2, 3, 4],返回 [1, 3, 2, 4]. 我的方法:设定两个数组,分别 ...
- window.open()与window.showModalDialog区别
window.open()与window.showModalDialog区别 弹出窗口两种方式: 1.window.showModalDialog: var feature = &qu ...
- zookeeper:一.zookeeper集群安装
1.zookeeper简介2.安装zookeeper2.1 安装环境准备2.2 安装zookeeper2.2.1.解压zookeeper压缩包到/opt/zookeeper2.2.2.编辑zookee ...