Increasing Speed Limits

Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 481    Accepted Submission(s): 245

Problem Description
You were driving along a highway when you got caught by the road police for speeding. It turns out that they\'ve been following you, and they were amazed by the fact that you were accelerating the whole time without using the brakes! And now you desperately need an excuse to explain that.

You've decided that it would be reasonable to say "all the speed limit signs I saw were in increasing order, that\'s why I've been accelerating". The police officer laughs in reply, and tells you all the signs that are placed along the segment of highway you drove, and says that's unlikely that you were so lucky just to see some part of these signs that were in increasing order.

Now you need to estimate that likelihood, or, in other words, find out how many different subsequences of the given sequence are strictly increasing. The empty subsequence does not count since that would imply you didn't look at any speed limits signs at all!

For example, (1, 2, 5) is an increasing subsequence of (1, 4, 2, 3, 5, 5), and we count it twice because there are two ways to select (1, 2, 5) from the list.

 
Input
The first line of input gives the number of cases, N. N test cases follow. The first line of each case contains n, m, X, Y and Z each separated by a space. n will be the length of the sequence of speed limits. m will be the length of the generating array A. The next m lines will contain the m elements of A, one integer per line (from A[0] to A[m-1]).

Using A, X, Y and Z, the following pseudocode will print the speed limit sequence in order. mod indicates the remainder operation.

for i = 0 to n-1
print A[i mod m]
A[i mod m] = (X * A[i mod m] + Y * (i + 1)) mod Z

Note: The way that the input is generated has nothing to do with the intended solution and exists solely to keep the size of the input files low.

1 ≤ m ≤ n ≤ 500 000

 
Output
For each test case you should output one line containing "Case #T: S" (quotes for clarity) where T is the number of the test case and S is the number of non-empty increasing subsequences mod 1 000 000 007.
 
Sample Input
2
5 5 0 0 5
1
2
1
2
3
6
2 2 1000000000 6
1
2
 
Sample Output
Case #1: 15
Case #2: 13
 
Source
 
Recommend
gaojie   |   We have carefully selected several similar problems for you:  3450 2227 2642 1255 3743 
 

在奔溃的边缘a了,搞了近一天= =!!

题意开始也没弄懂,后来知道是由一个数组推出目标数组(s[]):

for(int i=0;i<m;i++)
    scanf("%d",&a[i]);
for(int i=0;i<n;i++){
    s[i]=a[i%m];
    t[i]=s[i]; //用于离散化处理
    a[i%m]=(x*a[i%m]+y*(i+1))%z;
}

然后离散化处理:

sort(t,t+n);
cnt=0;
a[++cnt]=t[0];
for(int i=1;i<n;i++){
    if(t[i]!=t[i-1]){
        a[++cnt]=t[i];
    }
}

此处是简单的处理,实际运用则是在二分查找里(search());

最后处理目标数组s[],由dp思想可以从前状态推出后状态!然后用树状数组实现,时间复杂度就是O(n*lgn),贡献了了好多次TLE,一开始用map,后来才换成二分,map耗时较大,明白了简单的不一定好,出来混迟早要还的!!

 //2218MS    8136K    1668 B    G++
#include<iostream>
#include<map>
#include<algorithm>
#define M 1000000007
#define N 500005
#define ll __int64
using namespace std;
int c[N],a[N],t[N],s[N];
int cnt;
inline int lowbit(int k)
{
return (-k)&k;
}
inline void update(int k,int detal)
{
for(int i=k;i<=cnt;i+=lowbit(i)){
c[i]+=detal;
if(c[i]>=M) c[i]%=M;
}
}
inline int getsum(int k)
{
int s=;
for(int i=k;i>;i-=lowbit(i)){
s+=c[i];
if(s>=M) s%=M;
}
return s;
}
inline int search(int a0[],int m)
{
int l=,r=cnt,mid;
while(l<r){
mid=(l+r)>>;
if(a0[mid]<m) l=mid+;
else r=mid;
}
return l;
}
int main(void)
{
int cas,n,m,k=;
ll x,y,z;
scanf("%d",&cas);
while(cas--)
{
memset(c,,sizeof(c));
scanf("%d%d%I64d%I64d%I64d",&n,&m,&x,&y,&z);
for(int i=;i<m;i++)
scanf("%d",&a[i]);
for(int i=;i<n;i++){
s[i]=a[i%m];
t[i]=s[i];
a[i%m]=(x*a[i%m]+y*(i+))%z;
}
sort(t,t+n);
cnt=;
//map<int,int>Map;
//Map[t[0]]=++cnt;
a[++cnt]=t[];
for(int i=;i<n;i++){
if(t[i]!=t[i-]){
//Map[t[i]]=++cnt;
a[++cnt]=t[i];
}
}
ll ans=;
update(,);
for(int i=;i<n;i++){
int id=search(a,s[i]); //离散化的二分查找
int temp=getsum(id);
ans+=temp; //dp思想
if(ans>=M) ans%=M;
update(id+,temp);
}
printf("Case #%d: %I64d\n",k++,ans);
}
return ;
}

hdu 3030 Increasing Speed Limits (离散化+树状数组+DP思想)的更多相关文章

  1. HDU 3030 - Increasing Speed Limits

    Problem Description You were driving along a highway when you got caught by the road police for spee ...

  2. HDU 6318 - Swaps and Inversions - [离散化+树状数组求逆序数][杭电2018多校赛2]

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=6318 Problem Description Long long ago, there was an ...

  3. HDU 5792 World is Exploding (离散化+树状数组)

    题意:给定 n 个数,让你数出 a < b && c < d && a != b != c != d  && Aa < Ab & ...

  4. HDU 5862 Counting Intersections(离散化 + 树状数组)

    Counting Intersections Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  5. HDU 6447 YJJ’s Salesman (树状数组 + DP + 离散)

    题意: 二维平面上N个点,从(0,0)出发到(1e9,1e9),每次只能往右,上,右上三个方向移动, 该N个点只有从它的左下方格点可达,此时可获得收益.求该过程最大收益. 分析:我们很容易就可以想到用 ...

  6. HDU 5862 Counting Intersections(离散化+树状数组)

    HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...

  7. hdu 3015 Disharmony Trees (离散化+树状数组)

    Disharmony Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. HDU 6318.Swaps and Inversions-求逆序对-线段树 or 归并排序 or 离散化+树状数组 (2018 Multi-University Training Contest 2 1010)

    6318.Swaps and Inversions 这个题就是找逆序对,然后逆序对数*min(x,y)就可以了. 官方题解:注意到逆序对=交换相邻需要交换的次数,那么输出 逆序对个数 即可. 求逆序对 ...

  9. CodeForces 540E - Infinite Inversions(离散化+树状数组)

    花了近5个小时,改的乱七八糟,终于A了. 一个无限数列,1,2,3,4,...,n....,给n个数对<i,j>把数列的i,j两个元素做交换.求交换后数列的逆序对数. 很容易想到离散化+树 ...

随机推荐

  1. WEB框架概述(译)

    在学习WEB框架之前,我个人觉得需要搞清楚一件事:什么是WEB框架?在网上找了很多资料,觉得什么是WEB框架这篇文章讲的比较全面而清晰,本文作者Jeff Knupp. 全文如下: Web 应用框架,或 ...

  2. outer join test

    create table t1_outerjoin(a int, b int , c int); create table t2_outerjoin(a int); create table t3_o ...

  3. YUM本地源制作与yum网络版仓库

    1.修改本机上的YUM源配置文件,将源指向自己 cd /etc/yum.repos.d/ 备份原有的YUM源的配置文件 rename .repo .repo.bak * rename CentOS-M ...

  4. Charles使用及mock数据

    1.下载charles 3.9.2[破解版地址:https://download.csdn.net/my] 下方有一种方法可破解4.2以前的版本 // Charles Proxy License // ...

  5. python切片技巧

    写一个程序,打印数字1到100,3的倍数打印“Fizz”来替换这个数,5的倍数打印“Buzz”,对于既是3的倍数又是5的倍数的数字打印“FizzBuzz” for x in range(101): p ...

  6. node事件循环

    Node.js 是单进程单线程应用程序,但是通过事件和回调支持并发,所以性能非常高. Node.js 的每一个 API 都是异步的,并作为一个独立线程运行,使用异步函数调用,并处理并发. Node.j ...

  7. JSP页面中文乱码问题

    $.get()方法到服务器端中文乱码 在jsp页面使用encodeURI(“中文”),在服务器端进行解码 String name = req.getParameter("name" ...

  8. 剑指offer-字符串的排列26

    题目描述 输入一个字符串,按字典序打印出该字符串中字符的所有排列.例如输入字符串abc,则打印出由字符a,b,c所能排列出来的所有字符串abc,acb,bac,bca,cab和cba. 输入描述: 输 ...

  9. 线性代数之——正交矩阵和 Gram-Schmidt 正交化

    这部分我们有两个目标.一是了解正交性是怎么让 \(\hat x\) .\(p\) .\(P\) 的计算变得简单的,这种情况下,\(A^TA\) 将会是一个对角矩阵.二是学会怎么从原始向量中构建出正交向 ...

  10. Bcp 使用心得【转】

    在做这方面研究的时候,的确遇到了不少麻烦. 首先在做bcp的时候,要开通大数据量访问权限 一.基于sql语句的导入导出 如果是基于SQL语句的导入导出,需要使用存储过程“master..xp_cmds ...