Increasing Speed Limits

Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 481    Accepted Submission(s): 245

Problem Description
You were driving along a highway when you got caught by the road police for speeding. It turns out that they\'ve been following you, and they were amazed by the fact that you were accelerating the whole time without using the brakes! And now you desperately need an excuse to explain that.

You've decided that it would be reasonable to say "all the speed limit signs I saw were in increasing order, that\'s why I've been accelerating". The police officer laughs in reply, and tells you all the signs that are placed along the segment of highway you drove, and says that's unlikely that you were so lucky just to see some part of these signs that were in increasing order.

Now you need to estimate that likelihood, or, in other words, find out how many different subsequences of the given sequence are strictly increasing. The empty subsequence does not count since that would imply you didn't look at any speed limits signs at all!

For example, (1, 2, 5) is an increasing subsequence of (1, 4, 2, 3, 5, 5), and we count it twice because there are two ways to select (1, 2, 5) from the list.

 
Input
The first line of input gives the number of cases, N. N test cases follow. The first line of each case contains n, m, X, Y and Z each separated by a space. n will be the length of the sequence of speed limits. m will be the length of the generating array A. The next m lines will contain the m elements of A, one integer per line (from A[0] to A[m-1]).

Using A, X, Y and Z, the following pseudocode will print the speed limit sequence in order. mod indicates the remainder operation.

for i = 0 to n-1
print A[i mod m]
A[i mod m] = (X * A[i mod m] + Y * (i + 1)) mod Z

Note: The way that the input is generated has nothing to do with the intended solution and exists solely to keep the size of the input files low.

1 ≤ m ≤ n ≤ 500 000

 
Output
For each test case you should output one line containing "Case #T: S" (quotes for clarity) where T is the number of the test case and S is the number of non-empty increasing subsequences mod 1 000 000 007.
 
Sample Input
2
5 5 0 0 5
1
2
1
2
3
6
2 2 1000000000 6
1
2
 
Sample Output
Case #1: 15
Case #2: 13
 
Source
 
Recommend
gaojie   |   We have carefully selected several similar problems for you:  3450 2227 2642 1255 3743 
 

在奔溃的边缘a了,搞了近一天= =!!

题意开始也没弄懂,后来知道是由一个数组推出目标数组(s[]):

for(int i=0;i<m;i++)
    scanf("%d",&a[i]);
for(int i=0;i<n;i++){
    s[i]=a[i%m];
    t[i]=s[i]; //用于离散化处理
    a[i%m]=(x*a[i%m]+y*(i+1))%z;
}

然后离散化处理:

sort(t,t+n);
cnt=0;
a[++cnt]=t[0];
for(int i=1;i<n;i++){
    if(t[i]!=t[i-1]){
        a[++cnt]=t[i];
    }
}

此处是简单的处理,实际运用则是在二分查找里(search());

最后处理目标数组s[],由dp思想可以从前状态推出后状态!然后用树状数组实现,时间复杂度就是O(n*lgn),贡献了了好多次TLE,一开始用map,后来才换成二分,map耗时较大,明白了简单的不一定好,出来混迟早要还的!!

 //2218MS    8136K    1668 B    G++
#include<iostream>
#include<map>
#include<algorithm>
#define M 1000000007
#define N 500005
#define ll __int64
using namespace std;
int c[N],a[N],t[N],s[N];
int cnt;
inline int lowbit(int k)
{
return (-k)&k;
}
inline void update(int k,int detal)
{
for(int i=k;i<=cnt;i+=lowbit(i)){
c[i]+=detal;
if(c[i]>=M) c[i]%=M;
}
}
inline int getsum(int k)
{
int s=;
for(int i=k;i>;i-=lowbit(i)){
s+=c[i];
if(s>=M) s%=M;
}
return s;
}
inline int search(int a0[],int m)
{
int l=,r=cnt,mid;
while(l<r){
mid=(l+r)>>;
if(a0[mid]<m) l=mid+;
else r=mid;
}
return l;
}
int main(void)
{
int cas,n,m,k=;
ll x,y,z;
scanf("%d",&cas);
while(cas--)
{
memset(c,,sizeof(c));
scanf("%d%d%I64d%I64d%I64d",&n,&m,&x,&y,&z);
for(int i=;i<m;i++)
scanf("%d",&a[i]);
for(int i=;i<n;i++){
s[i]=a[i%m];
t[i]=s[i];
a[i%m]=(x*a[i%m]+y*(i+))%z;
}
sort(t,t+n);
cnt=;
//map<int,int>Map;
//Map[t[0]]=++cnt;
a[++cnt]=t[];
for(int i=;i<n;i++){
if(t[i]!=t[i-]){
//Map[t[i]]=++cnt;
a[++cnt]=t[i];
}
}
ll ans=;
update(,);
for(int i=;i<n;i++){
int id=search(a,s[i]); //离散化的二分查找
int temp=getsum(id);
ans+=temp; //dp思想
if(ans>=M) ans%=M;
update(id+,temp);
}
printf("Case #%d: %I64d\n",k++,ans);
}
return ;
}

hdu 3030 Increasing Speed Limits (离散化+树状数组+DP思想)的更多相关文章

  1. HDU 3030 - Increasing Speed Limits

    Problem Description You were driving along a highway when you got caught by the road police for spee ...

  2. HDU 6318 - Swaps and Inversions - [离散化+树状数组求逆序数][杭电2018多校赛2]

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=6318 Problem Description Long long ago, there was an ...

  3. HDU 5792 World is Exploding (离散化+树状数组)

    题意:给定 n 个数,让你数出 a < b && c < d && a != b != c != d  && Aa < Ab & ...

  4. HDU 5862 Counting Intersections(离散化 + 树状数组)

    Counting Intersections Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  5. HDU 6447 YJJ’s Salesman (树状数组 + DP + 离散)

    题意: 二维平面上N个点,从(0,0)出发到(1e9,1e9),每次只能往右,上,右上三个方向移动, 该N个点只有从它的左下方格点可达,此时可获得收益.求该过程最大收益. 分析:我们很容易就可以想到用 ...

  6. HDU 5862 Counting Intersections(离散化+树状数组)

    HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...

  7. hdu 3015 Disharmony Trees (离散化+树状数组)

    Disharmony Trees Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. HDU 6318.Swaps and Inversions-求逆序对-线段树 or 归并排序 or 离散化+树状数组 (2018 Multi-University Training Contest 2 1010)

    6318.Swaps and Inversions 这个题就是找逆序对,然后逆序对数*min(x,y)就可以了. 官方题解:注意到逆序对=交换相邻需要交换的次数,那么输出 逆序对个数 即可. 求逆序对 ...

  9. CodeForces 540E - Infinite Inversions(离散化+树状数组)

    花了近5个小时,改的乱七八糟,终于A了. 一个无限数列,1,2,3,4,...,n....,给n个数对<i,j>把数列的i,j两个元素做交换.求交换后数列的逆序对数. 很容易想到离散化+树 ...

随机推荐

  1. Luogu2917_ [USACO08NOV]奶牛混合起来Mixed Up Cows_KEY

    题目传送门 看到数据范围就果断装压. 设f[i][j]表示i状态下最后一个数字为a[j]. code: #include <cstdio> using namespace std; ]; ...

  2. day 1 安装pygame

    1.稀里糊涂装上了 参考博客:http://blog.csdn.net/sinat_40043477/article/details/78276460

  3. 怎么判断ThreadPool线程池里的任务都执行完毕

    在下面 链接中做方便的应该是第三种方法(他也推荐了),但是第三种方法有个小问题,就是 : WaitHandle.WaitAll(_ManualEvents); 中的_ManualEvents最大为64 ...

  4. springboot+websocket+sockjs进行消息推送【基于STOMP协议】

    springboot+websocket+sockjs进行消息推送[基于STOMP协议] WebSocket是在HTML5基础上单个TCP连接上进行全双工通讯的协议,只要浏览器和服务器进行一次握手,就 ...

  5. 「日常训练」Divisibility by Eight(Codeforces Round 306 Div.2 C)

    题意与分析 极简单的数论+思维题. 代码 #include <bits/stdc++.h> #define MP make_pair #define PB emplace_back #de ...

  6. php单例模式和工厂模式

    单例模式:防止重复实例化,避免大量的new操作,减少消耗系统和内存的资源,使得有且仅有一个实例对象 header("Content-type: text/html; charset=utf- ...

  7. python 定位文件目录

    经常有引用文件的地方,所以整理了一下如何定位文件目录的方法 定位当前文件的目录 import os file_path = os.path.dirname(__file__) 定位当前文件的父目录 i ...

  8. Linux命令应用大词典-第19章 文件系统管理

    19.1 mkfs:创建Linux文件系统 19.2 mke2fs:创建ext2.3.4文件系统 19.3 mkfs.ext4:创建ext4文件系统 19.4 mkfs.ext3:创建ext3文件系统 ...

  9. HDU - 6444(单调队列+思维)

    链接:HDU - 6444 题意:给出一个包含 n 个数的环,每个数都有一个价值,起点任选,每次跳顺时针跳 k 个数,在哪个数就能获得该价值(包括起点),最多取 m 次,问最少需要补充多少价值,所拿的 ...

  10. 流畅的python(笔记)

    流畅的python中有很多奇技淫巧,整本书都在强调如何最大限度地利用Python 标准库.介绍了很多python的不常用的数据类型.操作.库等,对于入门python后想要提升对python的认识应该有 ...