【bzoj3312】[Usaco2013 Nov]No Change 状态压缩dp+二分
题目描述
Farmer John is at the market to purchase supplies for his farm. He has in his pocket K coins (1 <= K <= 16), each with value in the range 1..100,000,000. FJ would like to make a sequence of N purchases (1 <= N <= 100,000), where the ith purchase costs c(i) units of money (1 <= c(i) <= 10,000). As he makes this sequence of purchases, he can periodically stop and pay, with a single coin, for all the purchases made since his last payment (of course, the single coin he uses must be large enough to pay for all of these). Unfortunately, the vendors at the market are completely out of change, so whenever FJ uses a coin that is larger than the amount of money he owes, he sadly receives no changes in return! Please compute the maximum amount of money FJ can end up with after making his N purchases in sequence. Output -1 if it is impossible for FJ to make all of his purchases.
K个硬币,要买N个物品。
给定买的顺序,即按顺序必须是一路买过去,当选定买的东西物品序列后,付出钱后,货主是不会找零钱的。现希望买完所需要的东西后,留下的钱越多越好,如果不能完成购买任务,输出-1
输入
Line 1: Two integers, K and N.
* Lines 2..1+K: Each line contains the amount of money of one of FJ's coins.
* Lines 2+K..1+N+K: These N lines contain the costs of FJ's intended purchases.
输出
* Line 1: The maximum amount of money FJ can end up with, or -1 if FJ cannot complete all of his purchases.
样例输入
3 6
12
15
10
6
3
3
2
3
7
样例输出
12
题解
状压dp+二分
f[i]表示硬币使用状态为i时最多能购买的物品
那么有f[i]=k (sum[k]-sum[f[i^(1<<j)]]≤v[j])。
然后二分查找求出k即可。
还是注意数组从1开始的问题。
#include <cstdio>
#include <algorithm>
using namespace std;
int f[70000] , v[20] , a[100010] , sum[100010] , cost[70000] , n , base[70000];
int search(int z , int c)
{
int l = z , r = n , mid , ans = -1;
while(l <= r)
{
mid = (l + r) >> 1;
if(sum[mid] - sum[z] <= c)
ans = mid , l = mid + 1;
else r = mid - 1;
}
return ans;
}
int main()
{
int k , i , j , tmp , ans = -1 , sn = 0;
scanf("%d%d" , &k , &n);
for(i = 1 ; i <= k ; i ++ )
scanf("%d" , &v[i]) , sn += v[i] , base[1 << (i - 1)] = i;
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &a[i]) , sum[i] = sum[i - 1] + a[i];
for(i = 1 ; i < (1 << k) ; i ++ )
{
for(j = 1 ; j <= k ; j ++ )
{
if((1 << (j - 1)) & i)
{
tmp = search(f[i ^ (1 << (j - 1))] , v[j]);
if(tmp != -1)
f[i] = max(f[i] , tmp);
}
}
}
for(i = 1 ; i < (1 << k) ; i ++ )
{
cost[i] = cost[i - (i & (-i))] + v[base[i & (-i)]];
if(f[i] == n) ans = max(ans , sn - cost[i]);
}
printf("%d\n" , ans);
return 0;
}
【bzoj3312】[Usaco2013 Nov]No Change 状态压缩dp+二分的更多相关文章
- 【BZOJ3312】[Usaco2013 Nov]No Change 状压DP+二分
[BZOJ3312][Usaco2013 Nov]No Change Description Farmer John is at the market to purchase supplies for ...
- bzoj3312: [Usaco2013 Nov]No Change
题意: K个硬币,要买N个物品.K<=16,N<=1e5 给定买的顺序,即按顺序必须是一路买过去,当选定买的东西物品序列后,付出钱后,货主是不会找零钱的.现希望买完所需要的东西后,留下的钱 ...
- BFS+状态压缩DP+二分枚举+TSP
http://acm.hdu.edu.cn/showproblem.php?pid=3681 Prison Break Time Limit: 5000/2000 MS (Java/Others) ...
- 【bzoj3886】[Usaco2015 Jan]Moovie Mooving 状态压缩dp+二分
题目描述 Bessie is out at the movies. Being mischievous as always, she has decided to hide from Farmer J ...
- 【bzoj1231】[Usaco2008 Nov]mixup2 混乱的奶牛 状态压缩dp
题目描述 混乱的奶牛[Don Piele, 2007]Farmer John的N(4 <= N <= 16)头奶牛中的每一头都有一个唯一的编号S_i (1 <= S_i <= ...
- 【bzoj1725】[USACO2006 Nov]Corn Fields牧场的安排 状态压缩dp
题目描述 Farmer John新买了一块长方形的牧场,这块牧场被划分成M列N行(1<=M<=12; 1<=N<=12),每一格都是一块正方形的土地.FJ打算在牧场上的某几格土 ...
- bzoj 3312: [Usaco2013 Nov]No Change
3312: [Usaco2013 Nov]No Change Description Farmer John is at the market to purchase supplies for his ...
- hdu 4057 AC自己主动机+状态压缩dp
http://acm.hdu.edu.cn/showproblem.php?pid=4057 Problem Description Dr. X is a biologist, who likes r ...
- HOJ 2226&POJ2688 Cleaning Robot(BFS+TSP(状态压缩DP))
Cleaning Robot Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4264 Accepted: 1713 Descri ...
随机推荐
- MySQL高级第四章——MySQL的锁机制
一.概述 1.定义 锁是计算机协调多个进程或线程并发访问某一资源的限制. 2.分类 操作类型来分: 读锁(共享锁)和写锁(排它锁) 数据粒度来分: 表锁和行锁 二.三锁 1.表锁——偏读 特点: 偏向 ...
- 北京Uber优步司机奖励政策(1月18日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- PHP中URL字符串与关联数组的互相转换
转换PHP数组为查询字符串放到URL中 $data = array( 'apikey'=>'xg6tr7k', 'user'=>'abcd', 'email'=>'root@exam ...
- CakePHP2.x 发送邮件
cake提供了多种发送邮件的方法,并且简单实用.以2.x为例 第一步 创建并添加邮件配置信息 拷贝app\Config\email.php.default 为email.php 打开在EmailCon ...
- MySQL 取得字段子串修改
MySQL 中, GeneID 为 GRMZM2G549533_P01,1123,45 , 需要修改为 GRMZM2G549533_P01 update test set GeneID=SUBSTRI ...
- 初试Docker on Debian on VirtualBox
一直以来都对Docker如雷贯耳,很想尝试一下但都被各种忙给耽误了,最近由于项目调试,需要安装 Oracle 和 SQL Server 数据库,但又不想安装到本机系统里,于是下决心啃一下docker这 ...
- 『Python Kivy』API说明:kivy.app.App
App类是创建Kivy应用的基础.我们可以将其看成是Kivy运行循环当中的主入口.在绝大多数的例子中,你创建这个类的子类,然后构建你自己的应用.当你已经准备好开始应用的整个生命周期时,你可以实例化你定 ...
- jmeter关联三种常用方法
在LR中有自动关联跟手动关联,但在我看来手动关联更准确,在jmeter中,就只有手动关联 为什么要进行关联:对系统进行操作时,本次操作或下一次操作对服务器提交的请求,这参数里边有部分参数需要服务器返回 ...
- 完整的正则表达式知识汇总(Python知识不断更新)
## 大纲: ## 一.正则概述 1.正则是什么 正则就是一套规则,或者语法 2.正则的作用 让我们判断是否符合我们的的规则,或者根据规则找到符合规则的数据 3.使用场景 可以用正则判断我们输入的邮箱 ...
- Uncaught Error: code length overflow. (1604>1056)
解决方法来源~~~https://blog.csdn.net/arrowzz/article/details/80656510 二维码生成时,如果长度太长会有异常: Uncaught Error: c ...