Wunder Fund Round 2016 (Div. 1 + Div. 2 combined) F. Double Knapsack 鸽巢原理 构造
F. Double Knapsack
题目连接:
http://www.codeforces.com/contest/618/problem/F
Description
You are given two multisets A and B. Each multiset has exactly n integers each between 1 and n inclusive. Multisets may contain multiple copies of the same number.
You would like to find a nonempty subset of A and a nonempty subset of B such that the sum of elements in these subsets are equal. Subsets are also multisets, i.e. they can contain elements with equal values.
If no solution exists, print - 1. Otherwise, print the indices of elements in any such subsets of A and B that have the same sum.
Input
The first line of the input contains a single integer n (1 ≤ n ≤ 1 000 000) — the size of both multisets.
The second line contains n integers, denoting the elements of A. Each element will be between 1 and n inclusive.
The third line contains n integers, denoting the elements of B. Each element will be between 1 and n inclusive.
Output
If there is no solution, print a single integer - 1. Otherwise, your solution should be printed on four lines.
The first line should contain a single integer ka, the size of the corresponding subset of A. The second line should contain ka distinct integers, the indices of the subset of A.
The third line should contain a single integer kb, the size of the corresponding subset of B. The fourth line should contain kb distinct integers, the indices of the subset of B.
Elements in both sets are numbered from 1 to n. If there are multiple possible solutions, print any of them.
Sample Input
10
10 10 10 10 10 10 10 10 10 10
10 9 8 7 6 5 4 3 2 1
Sample Output
1
2
3
5 8 10
Hint
题意
给你a集合和b集合,两个集合里面都恰好有n个数,每个数都是在[1,n]范围内的数
然后你需要找到a集合的一个子集,b集合的一个子集,使得这两个子集的和相同
然后输出出来。
题解:
令Ai = a0+a1+...+ai,Bi = b0+b1+...+bi
其中A0 = 0,B0 = 0;
我们假设An<Bn,那么对于每个Ai,我们都可以找到一个最大的j,使得Ai-Bj>=0
显然有(n+1)对Ai-Bj,且0<=(Ai-Bj)<=n-1
根据鸽巢原理,显然可以找到两对Ai-Bj = Ai'-Bj'
所以只要输出这两队就好了
边扫边存下来就好了
然后这道题就结束了
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e6+7;
const long long inf = 1e9;
long long a[maxn],b[maxn];
pair<int,int>d[maxn*2];
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]);
for(int i=1;i<=n;i++)
scanf("%lld",&b[i]);
for(int i=0;i<maxn*2;i++)
d[i]=make_pair(inf,inf);
d[maxn]=make_pair(1,1);
int p1=1,p2=1,now=0;
while(1)
{
if(now<=0)now+=a[p1++];
else now-=b[p2++];
if(d[now+maxn].first!=inf)
{
printf("%d\n",p1-d[now+maxn].first);
for(int i=d[now+maxn].first;i<p1;i++)
printf("%d ",i);
printf("\n");
printf("%d\n",p2-d[now+maxn].second);
for(int i=d[now+maxn].second;i<p2;i++)
printf("%d ",i);
printf("\n");
return 0;
}
d[now+maxn]=make_pair(p1,p2);
}
}
Wunder Fund Round 2016 (Div. 1 + Div. 2 combined) F. Double Knapsack 鸽巢原理 构造的更多相关文章
- Wunder Fund Round 2016 (Div. 1 + Div. 2 combined) B. Guess the Permutation 水题
B. Guess the Permutation 题目连接: http://www.codeforces.com/contest/618/problem/B Description Bob has a ...
- Wunder Fund Round 2016 (Div. 1 + Div. 2 combined) A. Slime Combining 水题
A. Slime Combining 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2768 Description Your frien ...
- Wunder Fund Round 2016 (Div. 1 + Div. 2 combined) E. Robot Arm 线段树
E. Robot Arm 题目连接: http://www.codeforces.com/contest/618/problem/E Description Roger is a robot. He ...
- Wunder Fund Round 2016 (Div. 1 + Div. 2 combined)
现在水平真的不够.只能够做做水题 A. Slime Combining 题意:就是给n个1给你.两个相同的数可以合并成一个数,比如说有两个相同的v,合并后的值就是v+1 思路:直接模拟栈 #inclu ...
- Codeforces Round #319 (Div. 2) B Modulo Sum (dp,鸽巢)
直接O(n*m)的dp也可以直接跑过. 因为上最多跑到m就终止了,因为前缀sum[i]取余数,i = 0,1,2,3...,m,有m+1个余数,m的余数只有m种必然有两个相同. #include< ...
- Codeforces Round #648 (Div. 2) E. Maximum Subsequence Value(鸽巢原理)
题目链接:https://codeforces.com/problemset/problem/1365/E 题意 有 $n$ 个元素,定义大小为 $k$ 的集合值为 $\sum2^i$,其中,若集合内 ...
- 2016 Multi-University Training Contest 3 1011【鸽巢原理】
题解: 坐标(0,m)的话,闭区间,可能一共有多少曼哈顿距离? 2m 但是给一个n,可能存在n(n+1)/2个曼哈顿距离 所以可以用抽屉原理了 当n比抽屉的数量大,直接输出yes 不用计算 那...N ...
- Educational Codeforces Round 117 (Rated for Div. 2)
Educational Codeforces Round 117 (Rated for Div. 2) A. Distance https://codeforces.com/contest/1612/ ...
- CF Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined)
1. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) B. Batch Sort 暴力枚举,水 1.题意:n*m的数组, ...
随机推荐
- Caffe学习笔记2
Caffe学习笔记2-用一个预训练模型提取特征 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hi ...
- 判断cookie创建的时间是否已经24小时
def read_cookie(self): cookiesfilepath="cookies%s" % self.uid if os.path.exists(cookiesfil ...
- Linux配置Tomcat
系统:Ubuntu,Tomcat:apache-tomcat-8.5.23.tar.gz 1,找到apache-tomcat-8.5.23.tar.gz,复制到 /usr/local root@ubu ...
- 3:django models Making queries 高级进阶--聚合运算
在前一遍文章django models Making queries里面我们提到了django常用的一些检索数据库的内容, 下面我们来看一下更为高级的检索聚合运算 这是我们要用到的模型 class A ...
- IntelliJ IDEA centos安装
安装的时候注意: 不要装一个插件否则无法启动!!!
- zoj 3195
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=3320 离线算法RE了.. #include<stdio.h> #i ...
- LoadRunner中的C Vuser函数
LoadRunner中的C Vuser函数 事务函数: lr_end_sub_transaction 标记子事务的结束以便进行性能分析. lr_end_transaction 标记事务的结束. ...
- nginx代理缓存
(1)缓存介绍 1.代理服务器端缓存作用 减少后端压力,提高网站并发延时 2.缓存常见类型 服务器端缓存:代理缓存,获取服务器端内容进行缓存 浏览器端缓存 3.nginx代理缓存:proxy_cach ...
- mp4文件格式解析(转载)
mp4文件格式解析 原作:http://blog.sina.com.cn/s/blog_48f93b530100jz4b.html 目前MP4的概念被炒得很火,也很乱.最开始MP4指的是音频(MP3的 ...
- 【剑指offer】面试题 65. 不用加减乘除做加法
面试题 65. 不用加减乘除做加法 题目描述 题目:写一个函数,求两个整数之和,要求在函数体内不得使用+.-.*./四则运算符号. Java 实现 public class Solution { ...