传送门:http://codeforces.com/contest/1092/problem/F

F. Tree with Maximum Cost

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given a tree consisting exactly of nn vertices. Tree is a connected undirected graph with n−1n−1 edges. Each vertex vv of this tree has a value avav assigned to it.

Let dist(x,y)dist(x,y) be the distance between the vertices xx and yy. The distance between the vertices is the number of edges on the simple path between them.

Let's define the cost of the tree as the following value: firstly, let's fix some vertex of the tree. Let it be vv. Then the cost of the tree is ∑i=1ndist(i,v)⋅ai∑i=1ndist(i,v)⋅ai.

Your task is to calculate the maximum possible cost of the tree if you can choose vv arbitrarily.

Input

The first line contains one integer nn, the number of vertices in the tree (1≤n≤2⋅1051≤n≤2⋅105).

The second line of the input contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤2⋅1051≤ai≤2⋅105), where aiai is the value of the vertex ii.

Each of the next n−1n−1 lines describes an edge of the tree. Edge ii is denoted by two integers uiui and vivi, the labels of vertices it connects (1≤ui,vi≤n1≤ui,vi≤n, ui≠viui≠vi).

It is guaranteed that the given edges form a tree.

Output

Print one integer — the maximum possible cost of the tree if you can choose any vertex as vv.

Examples
input

Copy
8
9 4 1 7 10 1 6 5
1 2
2 3
1 4
1 5
5 6
5 7
5 8
output

Copy
121
input

Copy
1
1337
output

Copy
0
Note

Picture corresponding to the first example:

You can choose the vertex 33 as a root, then the answer will be 2⋅9+1⋅4+0⋅1+3⋅7+3⋅10+4⋅1+4⋅6+4⋅5=18+4+0+21+30+4+24+20=1212⋅9+1⋅4+0⋅1+3⋅7+3⋅10+4⋅1+4⋅6+4⋅5=18+4+0+21+30+4+24+20=121.

In the second example tree consists only of one vertex so the answer is always 00.

题意概括:

给出一棵 有 N 个结点 N-1 条边的树,每个结点的权值为 a[ i ], 每条边的边权为 1 .

每一点的贡献 = 该点的深度 * 该点的权值。

所以以不同的点作为 整棵树的根 会得到不同的树结点的贡献总和。

求最大的树结点的贡献组合。

解题思路:

一、树的换根 两次DFS

跑第一次DFS,处理出 Sum[ u ] 以 u 为根的子树的贡献总和(包括 u 结点本身),处理出以 结点1为根 的树的贡献总和 res;

第二次 DFS 换根:

假设 fa = 1, u = 5(即从根为1 转换为根为 5)

由上图可以发现 红色部分的每一个结点都会与 根:u 多连了一条边 ,即红色部分的贡献要加倍(相当于深度+1,所有红色部分结点贡献)。

而红色部分就是 以 u 为根的子树之外的结点:即 ( Sum[ fa ] - Sum[ u ] );

蓝色部分的所有结点 都会与 根 u 少连一条边,即深度-1,蓝色部分结点贡献和减半;

以 fa = 1 为根时,总贡献和为 res;

转换为以 u = 5 为根时,总贡献和为 res + ( Sum[ fa ] - Sum[ u ]) - Sum[ u ];

当 u = 5 为根之后,

Sum[ fa ] = Sum[ fa ] - Sum[ u ] (即红色部分)因为树根变了,所以原本父亲的子树不再是整棵树,而是原来 以 u 为根的子树之外的结点。

Sum[ u ] = res; u 成为整棵树的根,整棵树都是 u 的子树。

按照这种方式递归搜索更新,取最大的res;

递归返回后,还原 Sum[ fa ], Sum[ u ], res 再搜索下一个儿子结点;

AC code:

 #include <cstdio>
#include <iostream>
#include <cstring>
#define FOR(x, maxx) for(x = 1; x <= maxx; x++)
#define ZERO(aa, x) memset(aa, x, sizeof(aa))
#define INF 0x3f3f3f3f
#define LL long long
using namespace std; const int MAXN = 2e5+; struct EDGE
{
int v, nxt;
}edge[MAXN<<];
int head[MAXN];
LL sum[MAXN], sumk[MAXN]; int cost[MAXN], dep[MAXN];
int N, cnt;
LL ans, res; void add(int from, int to)
{
edge[cnt].v = to;
edge[cnt].nxt = head[from];
head[from] = cnt++;
}
void init()
{
memset(head, -, sizeof(head));
cnt = ;
ans = ;
} void dfs1(int now, int dh, int fa)
{
//puts("zjy");ans = max(res, ans);
int to;
sum[now] = cost[now];
res += 1LL*cost[now]*dh;
// dep[now] = dh;
// f[now] = fa;
//printf("now: %d\n", now);
for(int i = head[now]; i != -; i = edge[i].nxt){
to = edge[i].v;
if(to != fa){
dfs1(to, dh+, now);
sum[now]+=sum[to];
}
}
} void dfs2(int now, int fa)
{
ans = max(res, ans);
int to;
LL a, b, c;
for(int i = head[now]; i != -; i = edge[i].nxt){
to = edge[i].v;
if(to == fa) continue;
a = sum[now], b = sum[to], c = res;
res-=sum[to]; //当前子树的节点距离-1
res+=sum[now]-sum[to]; //当前非子树节点距离+1
sum[now]-=sum[to];
sum[to] = a;
dfs2(to, now);
sum[now] = a; //还原
sum[to] = b;
res = c;
}
} int main()
{
int i, j;
init();
scanf("%I64d", &N);
FOR(i, N) scanf("%I64d", &cost[i]);
int u, v;
for(i = ; i < N; i++){
scanf("%d %d", &u, &v);
add(u, v);
add(v, u);
}
//puts("zjy");
dfs1(, , ); //第一次递归求初始值
dfs2(, );
printf("%I64d\n", ans);
return ;
}

二、树形dp

同样需要一次DFS 预处理出 s[ u ] 以 u 为根的子树的贡献总和(包括 u 结点本身);

状态:dp[ u ]  以 u 为根时,整棵树的贡献和

状态转移:dp[u] = dp[fa] + sum - 2*s[u]; ( sum 为所有结点的权值总和)

假设 fa = 1,u = 5;

dp[ 5 ] = dp[ 1 ] + 红色 - 蓝色 - cost[ u ];

dp[ 5 ] = dp[ 1 ] + ( sum - s[ 5 ]) - s[ 5 ];

dp[ 5 ] = dp[ 1 ]  + sum - 2*s[ 5 ];

AC code:

 #include <cstdio>
#include <iostream>
#include <cstring>
#define FOR(x, maxx) for(x = 1; x <= maxx; x++)
#define ZERO(aa, x) memset(aa, x, sizeof(aa))
#define INF 0x3f3f3f3f
#define LL long long
using namespace std; const int MAXN = 2e5+; struct EDGE
{
int v, nxt;
}edge[MAXN<<];
int head[MAXN], cnt;;
LL sum[MAXN], dp[MAXN];
LL cost[MAXN];
LL ans, res;
LL SSum;
int N; void add(int from, int to)
{
edge[cnt].v = to;
edge[cnt].nxt = head[from];
head[from] = cnt++;
}
void init()
{
memset(head, -, sizeof(head));
memset(dp, , sizeof(dp));
SSum = 0LL;
cnt = ;
ans = ;
} void dfs(int now, int fa)
{
int to;
sum[now] = cost[now];
for(int i = head[now]; i != -; i = edge[i].nxt){
to = edge[i].v;
if(to == fa) continue;
dfs(to, now);
sum[now]+=sum[to];
dp[now] = dp[now] + dp[to] + sum[to];
}
} void solve(int now, int fa)
{
int to;
if(fa) dp[now] = dp[fa]+SSum-*sum[now];
for(int i = head[now]; i != -; i = edge[i].nxt){
to = edge[i].v;
if(to == fa) continue;
solve(to, now);
}
ans = max(ans, dp[now]);
} int main()
{
init();
scanf("%d", &N);
for(int i = ; i <= N; i++){
scanf("%I64d", &cost[i]);
SSum+=cost[i];
}
int u, v;
for(int i = ; i < N; i++){
scanf("%d %d", &u, &v);
add(u, v);
add(v, u);
}
//puts("zjy");
dfs(, ); //第一次递归求初始值
solve(, );
printf("%I64d\n", ans);
return ;
}

Codeforces Round #527 (Div. 3) F. Tree with Maximum Cost 【DFS换根 || 树形dp】的更多相关文章

  1. Codeforces Round #527 (Div. 3) . F Tree with Maximum Cost

    题目链接 题意:给你一棵树,让你找一个顶点iii,使得这个点的∑dis(i,j)∗a[j]\sum dis(i,j)*a[j]∑dis(i,j)∗a[j]最大.dis(i,j)dis(i,j)dis( ...

  2. Codeforces Round #499 (Div. 1) F. Tree

    Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...

  3. Codeforces Round #527 (Div. 3)F(DFS,DP)

    #include<bits/stdc++.h>using namespace std;const int N=200005;int n,A[N];long long Mx,tot,S[N] ...

  4. Codeforces Round #135 (Div. 2) D - Choosing Capital for Treeland(两种树形DP)

  5. 2018.12.19 codeforces 1092F. Tree with Maximum Cost(换根dp)

    传送门 sbsbsb树形dpdpdp题. 题意简述:给出一棵边权为1的树,允许选任意一个点vvv为根,求∑i=1ndist(i,v)∗ai\sum_{i=1}^ndist(i,v)*a_i∑i=1n​ ...

  6. Codeforces Round #527 (Div. 3) ABCDEF题解

    Codeforces Round #527 (Div. 3) 题解 题目总链接:https://codeforces.com/contest/1092 A. Uniform String 题意: 输入 ...

  7. Codeforces Round #485 (Div. 2) F. AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  8. Codeforces Round #486 (Div. 3) F. Rain and Umbrellas

    Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...

  9. Codeforces Round #501 (Div. 3) F. Bracket Substring

    题目链接 Codeforces Round #501 (Div. 3) F. Bracket Substring 题解 官方题解 http://codeforces.com/blog/entry/60 ...

随机推荐

  1. MySQL触发器基本介绍

    基本简介: 1.触发器可以让你在执行insert,update,delete语句的时候,执行一些特定的操作.并且可以在MySQL中指定是在sql语句执行前触发还是执行后触发. 2.触发器没有返回值. ...

  2. angular 之 jquery-autocomplete

    自动完成还是原来的 bassistance.de 好用,详细用法参考官网. angular的js paths配置及依赖关系不多说: 'jquery': 'static/jquery-1.11.3/jq ...

  3. Firebird 日期时间

    查询当前时间: 1.使用内置系统变量 select current_timestamp from rdb$database 2.使用now字符串转换 select cast('NOW' as time ...

  4. C# wx获取token基本方法

    #region 请求Url,不发送数据 /// <summary> /// 请求Url,不发送数据 /// </summary> public static string Re ...

  5. [javaEE] EL表达式调用java方法

    1.新建个类,类里面定义静态方法 package com.tsh.utils; import java.net.URLEncoder; public class ELFunc { public sta ...

  6. 多文件上传CommonsMultipartResolver

    1.CommonsMultipartResolver是spring里面提供的一个上传方式,效率我不知道,但是加入spring容器管理还是很不错的. 2.先看依赖包pom.xml <project ...

  7. JBPM学习第3篇:10分钟熟悉JBPM工作台

    1.打开:http://localhost:8080/jbpm-console 键入用户名和密码(krisv/krisv)登陆. 2.看视频: http://download.jboss.org/jb ...

  8. 工厂模式的C++、Java实现

    1.工厂模式UML 图1. 工厂模式UML 2.C++实现 类视图如下: 图2. 工厂模式C++实现的类图 其中,Factory实现为: //工厂类. class Factory { public: ...

  9. Docker问题集合

    1. 安装后启动出现 解决办法: 删除以下文件夹重新启动docker服务即可: 可能原因:(1) 之前docker进程出现错误并保存在keys.json文件中 (2) 删除之前配置了阿里云镜像,生成了 ...

  10. jquery弹窗居中-类似alert()

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...