传送门:http://codeforces.com/contest/1092/problem/F

F. Tree with Maximum Cost

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given a tree consisting exactly of nn vertices. Tree is a connected undirected graph with n−1n−1 edges. Each vertex vv of this tree has a value avav assigned to it.

Let dist(x,y)dist(x,y) be the distance between the vertices xx and yy. The distance between the vertices is the number of edges on the simple path between them.

Let's define the cost of the tree as the following value: firstly, let's fix some vertex of the tree. Let it be vv. Then the cost of the tree is ∑i=1ndist(i,v)⋅ai∑i=1ndist(i,v)⋅ai.

Your task is to calculate the maximum possible cost of the tree if you can choose vv arbitrarily.

Input

The first line contains one integer nn, the number of vertices in the tree (1≤n≤2⋅1051≤n≤2⋅105).

The second line of the input contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤2⋅1051≤ai≤2⋅105), where aiai is the value of the vertex ii.

Each of the next n−1n−1 lines describes an edge of the tree. Edge ii is denoted by two integers uiui and vivi, the labels of vertices it connects (1≤ui,vi≤n1≤ui,vi≤n, ui≠viui≠vi).

It is guaranteed that the given edges form a tree.

Output

Print one integer — the maximum possible cost of the tree if you can choose any vertex as vv.

Examples
input

Copy
8
9 4 1 7 10 1 6 5
1 2
2 3
1 4
1 5
5 6
5 7
5 8
output

Copy
121
input

Copy
1
1337
output

Copy
0
Note

Picture corresponding to the first example:

You can choose the vertex 33 as a root, then the answer will be 2⋅9+1⋅4+0⋅1+3⋅7+3⋅10+4⋅1+4⋅6+4⋅5=18+4+0+21+30+4+24+20=1212⋅9+1⋅4+0⋅1+3⋅7+3⋅10+4⋅1+4⋅6+4⋅5=18+4+0+21+30+4+24+20=121.

In the second example tree consists only of one vertex so the answer is always 00.

题意概括:

给出一棵 有 N 个结点 N-1 条边的树,每个结点的权值为 a[ i ], 每条边的边权为 1 .

每一点的贡献 = 该点的深度 * 该点的权值。

所以以不同的点作为 整棵树的根 会得到不同的树结点的贡献总和。

求最大的树结点的贡献组合。

解题思路:

一、树的换根 两次DFS

跑第一次DFS,处理出 Sum[ u ] 以 u 为根的子树的贡献总和(包括 u 结点本身),处理出以 结点1为根 的树的贡献总和 res;

第二次 DFS 换根:

假设 fa = 1, u = 5(即从根为1 转换为根为 5)

由上图可以发现 红色部分的每一个结点都会与 根:u 多连了一条边 ,即红色部分的贡献要加倍(相当于深度+1,所有红色部分结点贡献)。

而红色部分就是 以 u 为根的子树之外的结点:即 ( Sum[ fa ] - Sum[ u ] );

蓝色部分的所有结点 都会与 根 u 少连一条边,即深度-1,蓝色部分结点贡献和减半;

以 fa = 1 为根时,总贡献和为 res;

转换为以 u = 5 为根时,总贡献和为 res + ( Sum[ fa ] - Sum[ u ]) - Sum[ u ];

当 u = 5 为根之后,

Sum[ fa ] = Sum[ fa ] - Sum[ u ] (即红色部分)因为树根变了,所以原本父亲的子树不再是整棵树,而是原来 以 u 为根的子树之外的结点。

Sum[ u ] = res; u 成为整棵树的根,整棵树都是 u 的子树。

按照这种方式递归搜索更新,取最大的res;

递归返回后,还原 Sum[ fa ], Sum[ u ], res 再搜索下一个儿子结点;

AC code:

 #include <cstdio>
#include <iostream>
#include <cstring>
#define FOR(x, maxx) for(x = 1; x <= maxx; x++)
#define ZERO(aa, x) memset(aa, x, sizeof(aa))
#define INF 0x3f3f3f3f
#define LL long long
using namespace std; const int MAXN = 2e5+; struct EDGE
{
int v, nxt;
}edge[MAXN<<];
int head[MAXN];
LL sum[MAXN], sumk[MAXN]; int cost[MAXN], dep[MAXN];
int N, cnt;
LL ans, res; void add(int from, int to)
{
edge[cnt].v = to;
edge[cnt].nxt = head[from];
head[from] = cnt++;
}
void init()
{
memset(head, -, sizeof(head));
cnt = ;
ans = ;
} void dfs1(int now, int dh, int fa)
{
//puts("zjy");ans = max(res, ans);
int to;
sum[now] = cost[now];
res += 1LL*cost[now]*dh;
// dep[now] = dh;
// f[now] = fa;
//printf("now: %d\n", now);
for(int i = head[now]; i != -; i = edge[i].nxt){
to = edge[i].v;
if(to != fa){
dfs1(to, dh+, now);
sum[now]+=sum[to];
}
}
} void dfs2(int now, int fa)
{
ans = max(res, ans);
int to;
LL a, b, c;
for(int i = head[now]; i != -; i = edge[i].nxt){
to = edge[i].v;
if(to == fa) continue;
a = sum[now], b = sum[to], c = res;
res-=sum[to]; //当前子树的节点距离-1
res+=sum[now]-sum[to]; //当前非子树节点距离+1
sum[now]-=sum[to];
sum[to] = a;
dfs2(to, now);
sum[now] = a; //还原
sum[to] = b;
res = c;
}
} int main()
{
int i, j;
init();
scanf("%I64d", &N);
FOR(i, N) scanf("%I64d", &cost[i]);
int u, v;
for(i = ; i < N; i++){
scanf("%d %d", &u, &v);
add(u, v);
add(v, u);
}
//puts("zjy");
dfs1(, , ); //第一次递归求初始值
dfs2(, );
printf("%I64d\n", ans);
return ;
}

二、树形dp

同样需要一次DFS 预处理出 s[ u ] 以 u 为根的子树的贡献总和(包括 u 结点本身);

状态:dp[ u ]  以 u 为根时,整棵树的贡献和

状态转移:dp[u] = dp[fa] + sum - 2*s[u]; ( sum 为所有结点的权值总和)

假设 fa = 1,u = 5;

dp[ 5 ] = dp[ 1 ] + 红色 - 蓝色 - cost[ u ];

dp[ 5 ] = dp[ 1 ] + ( sum - s[ 5 ]) - s[ 5 ];

dp[ 5 ] = dp[ 1 ]  + sum - 2*s[ 5 ];

AC code:

 #include <cstdio>
#include <iostream>
#include <cstring>
#define FOR(x, maxx) for(x = 1; x <= maxx; x++)
#define ZERO(aa, x) memset(aa, x, sizeof(aa))
#define INF 0x3f3f3f3f
#define LL long long
using namespace std; const int MAXN = 2e5+; struct EDGE
{
int v, nxt;
}edge[MAXN<<];
int head[MAXN], cnt;;
LL sum[MAXN], dp[MAXN];
LL cost[MAXN];
LL ans, res;
LL SSum;
int N; void add(int from, int to)
{
edge[cnt].v = to;
edge[cnt].nxt = head[from];
head[from] = cnt++;
}
void init()
{
memset(head, -, sizeof(head));
memset(dp, , sizeof(dp));
SSum = 0LL;
cnt = ;
ans = ;
} void dfs(int now, int fa)
{
int to;
sum[now] = cost[now];
for(int i = head[now]; i != -; i = edge[i].nxt){
to = edge[i].v;
if(to == fa) continue;
dfs(to, now);
sum[now]+=sum[to];
dp[now] = dp[now] + dp[to] + sum[to];
}
} void solve(int now, int fa)
{
int to;
if(fa) dp[now] = dp[fa]+SSum-*sum[now];
for(int i = head[now]; i != -; i = edge[i].nxt){
to = edge[i].v;
if(to == fa) continue;
solve(to, now);
}
ans = max(ans, dp[now]);
} int main()
{
init();
scanf("%d", &N);
for(int i = ; i <= N; i++){
scanf("%I64d", &cost[i]);
SSum+=cost[i];
}
int u, v;
for(int i = ; i < N; i++){
scanf("%d %d", &u, &v);
add(u, v);
add(v, u);
}
//puts("zjy");
dfs(, ); //第一次递归求初始值
solve(, );
printf("%I64d\n", ans);
return ;
}

Codeforces Round #527 (Div. 3) F. Tree with Maximum Cost 【DFS换根 || 树形dp】的更多相关文章

  1. Codeforces Round #527 (Div. 3) . F Tree with Maximum Cost

    题目链接 题意:给你一棵树,让你找一个顶点iii,使得这个点的∑dis(i,j)∗a[j]\sum dis(i,j)*a[j]∑dis(i,j)∗a[j]最大.dis(i,j)dis(i,j)dis( ...

  2. Codeforces Round #499 (Div. 1) F. Tree

    Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...

  3. Codeforces Round #527 (Div. 3)F(DFS,DP)

    #include<bits/stdc++.h>using namespace std;const int N=200005;int n,A[N];long long Mx,tot,S[N] ...

  4. Codeforces Round #135 (Div. 2) D - Choosing Capital for Treeland(两种树形DP)

  5. 2018.12.19 codeforces 1092F. Tree with Maximum Cost(换根dp)

    传送门 sbsbsb树形dpdpdp题. 题意简述:给出一棵边权为1的树,允许选任意一个点vvv为根,求∑i=1ndist(i,v)∗ai\sum_{i=1}^ndist(i,v)*a_i∑i=1n​ ...

  6. Codeforces Round #527 (Div. 3) ABCDEF题解

    Codeforces Round #527 (Div. 3) 题解 题目总链接:https://codeforces.com/contest/1092 A. Uniform String 题意: 输入 ...

  7. Codeforces Round #485 (Div. 2) F. AND Graph

    Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...

  8. Codeforces Round #486 (Div. 3) F. Rain and Umbrellas

    Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...

  9. Codeforces Round #501 (Div. 3) F. Bracket Substring

    题目链接 Codeforces Round #501 (Div. 3) F. Bracket Substring 题解 官方题解 http://codeforces.com/blog/entry/60 ...

随机推荐

  1. What is the difference between modified duration, effective duration and duration?

    Macaulay Duration (traditionally just called Duration) The formula usually used to calculate a bond' ...

  2. Dell解决黑苹果网卡(BCM94352ZAE/DW1560)怎么都打不开WiFi

    Dell解决黑苹果网卡(BCM94352ZAE/DW1560)怎么都打不开WiFi 2017年10月20日17:41:00 by SemiconductorKING 本来觉得驱动这个网卡不是个问题,以 ...

  3. C#把大写英文变成小写英文,把小写英文变成大写英文

    static void Main(string[] args) { string s;  // 声明一个变量,来接受用户输入的值. Console.WriteLine("请输入一个字符串:& ...

  4. C# xml操作word-->word转2003xml

    1.第一步,准备word模版

  5. IIS网站不能访问

    摘要:IIS环境下,部署的网站在服务器上可以正常访问,客户端却不能访问. 原因:防火墙入站规则万维网服务没有开启.

  6. php array 数组及数组索引

    array (PHP 4, PHP 5, PHP 7) array — 新建一个数组 说明 array array ([ mixed $... ] ) 创建一个数组.关于数组是什么的信息请阅读数组一节 ...

  7. SSM实现批量删除功能

    批量删除功能的实现 其实实现这个功能还是挺简单的 因为我这是直接拼接的,所以用了DOM方法来获取id话不多说直接上代码首先是复选框全选和反选这里的话 获取最上面一个复选框的状态同步到拼接的复选框  $ ...

  8. easyui前后台转义字符和普通字符的相互转换问题

    昨天碰到一个问题,公司前端使用的是easyui和jquery,页面textarea编写了html代码,传入后台变成了<>类型代码,这样保存到数据库是没有问题的,但是在页面显示的时候需要显示 ...

  9. jQuery中的pushStack

    在学习jquery源码的时候,学到了其中的pushStack方法,在这里记录一下 源码为 // Take an array of elements and push it onto the stack ...

  10. Microsoft Windows Scripting Self-Paced Learning Guide

    http://www.mums.ac.ir/shares/hit/eduhit/book/windowsscripting.pdfhttp://support.microsoft.com/kb/926 ...