Codeforces Round #527 (Div. 3) F. Tree with Maximum Cost 【DFS换根 || 树形dp】
传送门:http://codeforces.com/contest/1092/problem/F
F. Tree with Maximum Cost
2 seconds
256 megabytes
standard input
standard output
You are given a tree consisting exactly of nn vertices. Tree is a connected undirected graph with n−1n−1 edges. Each vertex vv of this tree has a value avav assigned to it.
Let dist(x,y)dist(x,y) be the distance between the vertices xx and yy. The distance between the vertices is the number of edges on the simple path between them.
Let's define the cost of the tree as the following value: firstly, let's fix some vertex of the tree. Let it be vv. Then the cost of the tree is ∑i=1ndist(i,v)⋅ai∑i=1ndist(i,v)⋅ai.
Your task is to calculate the maximum possible cost of the tree if you can choose vv arbitrarily.
The first line contains one integer nn, the number of vertices in the tree (1≤n≤2⋅1051≤n≤2⋅105).
The second line of the input contains nn integers a1,a2,…,ana1,a2,…,an (1≤ai≤2⋅1051≤ai≤2⋅105), where aiai is the value of the vertex ii.
Each of the next n−1n−1 lines describes an edge of the tree. Edge ii is denoted by two integers uiui and vivi, the labels of vertices it connects (1≤ui,vi≤n1≤ui,vi≤n, ui≠viui≠vi).
It is guaranteed that the given edges form a tree.
Print one integer — the maximum possible cost of the tree if you can choose any vertex as vv.
8
9 4 1 7 10 1 6 5
1 2
2 3
1 4
1 5
5 6
5 7
5 8
121
1
1337
0
Picture corresponding to the first example:
You can choose the vertex 33 as a root, then the answer will be 2⋅9+1⋅4+0⋅1+3⋅7+3⋅10+4⋅1+4⋅6+4⋅5=18+4+0+21+30+4+24+20=1212⋅9+1⋅4+0⋅1+3⋅7+3⋅10+4⋅1+4⋅6+4⋅5=18+4+0+21+30+4+24+20=121.
In the second example tree consists only of one vertex so the answer is always 00.
题意概括:
给出一棵 有 N 个结点 N-1 条边的树,每个结点的权值为 a[ i ], 每条边的边权为 1 .
每一点的贡献 = 该点的深度 * 该点的权值。
所以以不同的点作为 整棵树的根 会得到不同的树结点的贡献总和。
求最大的树结点的贡献组合。
解题思路:
一、树的换根 两次DFS
跑第一次DFS,处理出 Sum[ u ] 以 u 为根的子树的贡献总和(包括 u 结点本身),处理出以 结点1为根 的树的贡献总和 res;
第二次 DFS 换根:

假设 fa = 1, u = 5(即从根为1 转换为根为 5)
由上图可以发现 红色部分的每一个结点都会与 根:u 多连了一条边 ,即红色部分的贡献要加倍(相当于深度+1,所有红色部分结点贡献)。
而红色部分就是 以 u 为根的子树之外的结点:即 ( Sum[ fa ] - Sum[ u ] );
蓝色部分的所有结点 都会与 根 u 少连一条边,即深度-1,蓝色部分结点贡献和减半;
以 fa = 1 为根时,总贡献和为 res;
转换为以 u = 5 为根时,总贡献和为 res + ( Sum[ fa ] - Sum[ u ]) - Sum[ u ];
当 u = 5 为根之后,
Sum[ fa ] = Sum[ fa ] - Sum[ u ] (即红色部分)因为树根变了,所以原本父亲的子树不再是整棵树,而是原来 以 u 为根的子树之外的结点。
Sum[ u ] = res; u 成为整棵树的根,整棵树都是 u 的子树。
按照这种方式递归搜索更新,取最大的res;
递归返回后,还原 Sum[ fa ], Sum[ u ], res 再搜索下一个儿子结点;
AC code:
#include <cstdio>
#include <iostream>
#include <cstring>
#define FOR(x, maxx) for(x = 1; x <= maxx; x++)
#define ZERO(aa, x) memset(aa, x, sizeof(aa))
#define INF 0x3f3f3f3f
#define LL long long
using namespace std; const int MAXN = 2e5+; struct EDGE
{
int v, nxt;
}edge[MAXN<<];
int head[MAXN];
LL sum[MAXN], sumk[MAXN]; int cost[MAXN], dep[MAXN];
int N, cnt;
LL ans, res; void add(int from, int to)
{
edge[cnt].v = to;
edge[cnt].nxt = head[from];
head[from] = cnt++;
}
void init()
{
memset(head, -, sizeof(head));
cnt = ;
ans = ;
} void dfs1(int now, int dh, int fa)
{
//puts("zjy");ans = max(res, ans);
int to;
sum[now] = cost[now];
res += 1LL*cost[now]*dh;
// dep[now] = dh;
// f[now] = fa;
//printf("now: %d\n", now);
for(int i = head[now]; i != -; i = edge[i].nxt){
to = edge[i].v;
if(to != fa){
dfs1(to, dh+, now);
sum[now]+=sum[to];
}
}
} void dfs2(int now, int fa)
{
ans = max(res, ans);
int to;
LL a, b, c;
for(int i = head[now]; i != -; i = edge[i].nxt){
to = edge[i].v;
if(to == fa) continue;
a = sum[now], b = sum[to], c = res;
res-=sum[to]; //当前子树的节点距离-1
res+=sum[now]-sum[to]; //当前非子树节点距离+1
sum[now]-=sum[to];
sum[to] = a;
dfs2(to, now);
sum[now] = a; //还原
sum[to] = b;
res = c;
}
} int main()
{
int i, j;
init();
scanf("%I64d", &N);
FOR(i, N) scanf("%I64d", &cost[i]);
int u, v;
for(i = ; i < N; i++){
scanf("%d %d", &u, &v);
add(u, v);
add(v, u);
}
//puts("zjy");
dfs1(, , ); //第一次递归求初始值
dfs2(, );
printf("%I64d\n", ans);
return ;
}
二、树形dp
同样需要一次DFS 预处理出 s[ u ] 以 u 为根的子树的贡献总和(包括 u 结点本身);
状态:dp[ u ] 以 u 为根时,整棵树的贡献和
状态转移:dp[u] = dp[fa] + sum - 2*s[u]; ( sum 为所有结点的权值总和)

假设 fa = 1,u = 5;
dp[ 5 ] = dp[ 1 ] + 红色 - 蓝色 - cost[ u ];
dp[ 5 ] = dp[ 1 ] + ( sum - s[ 5 ]) - s[ 5 ];
dp[ 5 ] = dp[ 1 ] + sum - 2*s[ 5 ];
AC code:
#include <cstdio>
#include <iostream>
#include <cstring>
#define FOR(x, maxx) for(x = 1; x <= maxx; x++)
#define ZERO(aa, x) memset(aa, x, sizeof(aa))
#define INF 0x3f3f3f3f
#define LL long long
using namespace std; const int MAXN = 2e5+; struct EDGE
{
int v, nxt;
}edge[MAXN<<];
int head[MAXN], cnt;;
LL sum[MAXN], dp[MAXN];
LL cost[MAXN];
LL ans, res;
LL SSum;
int N; void add(int from, int to)
{
edge[cnt].v = to;
edge[cnt].nxt = head[from];
head[from] = cnt++;
}
void init()
{
memset(head, -, sizeof(head));
memset(dp, , sizeof(dp));
SSum = 0LL;
cnt = ;
ans = ;
} void dfs(int now, int fa)
{
int to;
sum[now] = cost[now];
for(int i = head[now]; i != -; i = edge[i].nxt){
to = edge[i].v;
if(to == fa) continue;
dfs(to, now);
sum[now]+=sum[to];
dp[now] = dp[now] + dp[to] + sum[to];
}
} void solve(int now, int fa)
{
int to;
if(fa) dp[now] = dp[fa]+SSum-*sum[now];
for(int i = head[now]; i != -; i = edge[i].nxt){
to = edge[i].v;
if(to == fa) continue;
solve(to, now);
}
ans = max(ans, dp[now]);
} int main()
{
init();
scanf("%d", &N);
for(int i = ; i <= N; i++){
scanf("%I64d", &cost[i]);
SSum+=cost[i];
}
int u, v;
for(int i = ; i < N; i++){
scanf("%d %d", &u, &v);
add(u, v);
add(v, u);
}
//puts("zjy");
dfs(, ); //第一次递归求初始值
solve(, );
printf("%I64d\n", ans);
return ;
}
Codeforces Round #527 (Div. 3) F. Tree with Maximum Cost 【DFS换根 || 树形dp】的更多相关文章
- Codeforces Round #527 (Div. 3) . F Tree with Maximum Cost
题目链接 题意:给你一棵树,让你找一个顶点iii,使得这个点的∑dis(i,j)∗a[j]\sum dis(i,j)*a[j]∑dis(i,j)∗a[j]最大.dis(i,j)dis(i,j)dis( ...
- Codeforces Round #499 (Div. 1) F. Tree
Codeforces Round #499 (Div. 1) F. Tree 题目链接 \(\rm CodeForces\):https://codeforces.com/contest/1010/p ...
- Codeforces Round #527 (Div. 3)F(DFS,DP)
#include<bits/stdc++.h>using namespace std;const int N=200005;int n,A[N];long long Mx,tot,S[N] ...
- Codeforces Round #135 (Div. 2) D - Choosing Capital for Treeland(两种树形DP)
- 2018.12.19 codeforces 1092F. Tree with Maximum Cost(换根dp)
传送门 sbsbsb树形dpdpdp题. 题意简述:给出一棵边权为1的树,允许选任意一个点vvv为根,求∑i=1ndist(i,v)∗ai\sum_{i=1}^ndist(i,v)*a_i∑i=1n ...
- Codeforces Round #527 (Div. 3) ABCDEF题解
Codeforces Round #527 (Div. 3) 题解 题目总链接:https://codeforces.com/contest/1092 A. Uniform String 题意: 输入 ...
- Codeforces Round #485 (Div. 2) F. AND Graph
Codeforces Round #485 (Div. 2) F. AND Graph 题目连接: http://codeforces.com/contest/987/problem/F Descri ...
- Codeforces Round #486 (Div. 3) F. Rain and Umbrellas
Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/co ...
- Codeforces Round #501 (Div. 3) F. Bracket Substring
题目链接 Codeforces Round #501 (Div. 3) F. Bracket Substring 题解 官方题解 http://codeforces.com/blog/entry/60 ...
随机推荐
- Silverlight & Blend动画设计系列七:模糊效果(BlurEffect)与阴影效果(DropShadowEffect)
模糊效果(BlurEffect)与阴影效果(DropShadowEffect)是两个非常实用和常用的两个特效,比如在开发相册中,可以对照片的缩略图添加模糊效果,在放大照片的过程中动态改变照片的大小和模 ...
- element ui tabl 输出Html
在使用element ui的表格的时候有遇到过表格中的数据需要换行的问题,数据是由后台传回的包含分隔符的字符串,在尝试过使用slot和直接输出html后并不能实现 解决方法:使用column的form ...
- Spring课程 Spring入门篇 5-4 advice应用(上)
1 解析 1.1 通知执行顺序 2 代码演练 1 解析 1.1 通知执行顺序 aop执行方式为:前置通知==>所要增强的方法==>后置通知==>最终通知 在出现异常时会进行:前置通知 ...
- java设计模式之工厂模式学习
上周安排的写两篇设计模式的文章,结果一篇也没写,今天都给写了.回顾+反思.In this world he who stops ,won't get anything he wants! 工厂方法模式 ...
- css3之弹性盒模型初探(一)
什么是弹性盒模型? 弹性盒模型是指在父级改变大小的时候内部的自己元素也会相应的改变大小,即子集会按照父级的大小按比例自适应大小. 弹性盒模型的提出可以解决一些响应式布局的需求 如何使用弹性盒模型? ...
- JavaScript的重载(通过argument.length)
偶然间在博客园看到的关于js的重载(重载就是一组具有相同名字.不同参数列表,实现不同操作的函数或方法)问题,作为初学者,在看红宝书的时候,记得书中有概念说明js是没有重载的 所以,觉得有必要把这一段 ...
- google搜索使用技巧
1.输入框所有空格都被理解为加号2.搜索多个单词时,需要加上引号,会当字符串处理3.使用-(减号)剔除指定条件,如:'mongdb'-'nodejs'4.可以使用通配符,如'vue *'5.在指定网站 ...
- File中mkdir()和mkdirs()的区别
mkdir() 创建此抽象路径名指定的目录.只能在已经存在的目录中创建文件夹 如: File folder = new File("d:\\test1\\test2"); fold ...
- ASICS各跑鞋分类及选购方法
从跑吧转来的,老帖子后面的鞋子可能不能与时俱进 不过前面的方法不错. 1简介: ASICS鞋子鞋底如果有AHAR或AHAR+的为超耐磨标志,而且超耐度一般都是黑色,用指甲刮鞋底时如刮车轮底胶.ASIC ...
- 在Datagridview中添加datagridviewComboBox列并显示下拉列表
在DataGridView中自动的添加Column. private void button_autoAddColumn_Click(object sender, EventArgs e) { try ...