【数形结合】Erratic Expansion
[UVa12627]Erratic Expansion
算法入门经典第8章8-12(P245)
题目大意:起初有一个红球,每一次红球会分成三红一蓝,蓝球会分成四蓝(如图顺序),问K时的时候A~B行中有几个红色。
试题分析:很容易注意到,按照此种规律,矩形的左上角、右上角、左下角总是与上一个时刻的图形一样,这是我们分治的基础。
那么,既然得到了上面的,利用前缀和的思想,设f(k,i)表示k时刻从1到i行的红色数量,则答案为f(k,B)-f(k,A-1)
我们知道,第i个时刻的正方形边长为2^k,那么当i小于等于2^k时,就是上一个同样行的红色的数量*2(因为拓展了)
那么如果i大于2^k时,我们要怎么办呢?
首先,最显而易见的是左上角与右上角都是上一个时刻的图形,那么k时刻的红色总和为3^k,所以左上角右上角加起来就是2*(3^(k-1))。
那么剩下的那些也就是同上面的一样计算,也就是f(k-1,i-2^(k-1))了。
代码:
#include<iostream>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std; #define LL long long inline LL read(){
LL x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const LL INF=9999999;
const LL MAXN=100000;
LL T; LL C[MAXN+1];
LL Case;
LL K,N,M;
LL F(LL k,LL p){
if(p==0) return 0;
if(k==0) return 1;
if(p>=(1<<(k-1))) return F(k-1,p-(1<<(k-1)))+2*C[k-1];
else return 2*F(k-1,p);
} int main(){
T=read();C[0]=1;
for(LL i=1;i<=31;i++) C[i]=C[i-1]*3;
while(T--){
++Case;
K=read(),N=read(),M=read();
printf("Case %d: %lld\n",Case,F(K,M)-F(K,N-1));
}
return 0;
}
【数形结合】Erratic Expansion的更多相关文章
- UVa 1451 (数形结合 单调栈) Average
题意: 给出一个01串,选一个长度至少为L的连续子串,使得串中数字的平均值最大. 分析: 能把这道题想到用数形结合,用斜率表示平均值,我觉得这个想法太“天马行空”了 首先预处理子串的前缀和sum,如果 ...
- HDU3045 Picnic Cows (斜率DP优化)(数形结合)
转自PomeCat: "DP的斜率优化--对不必要的状态量进行抛弃,对不优的状态量进行搁置,使得在常数时间内找到最优解成为可能.斜率优化依靠的是数形结合的思想,通过将每个阶段和状态的答案反映 ...
- 【做题】TCSRM591 Div1 500 PyramidSequences——数形结合&思维
题意:定义高度为\(x\)的金字塔数列为周期为\(2x-2\)的无限数列.它的每一个周期都是形如\(1,2,...,x-1,x,x-1,...,2\)的形式.记高度为\(x\)的金字塔数列第\(i\) ...
- UVA 1451 Average平均值 (数形结合,斜率优化)
摘要:数形结合,斜率优化,单调队列. 题意:求一个长度为n的01串的子串,子串长度至少为L,平均值应该尽量大,多个满足条件取长度最短,还有多个的话,取起点最靠左. 求出前缀和S[i],令点Pi表示(i ...
- poj 1430 Binary Stirling Number 求斯特林数奇偶性 数形结合| 斯特林数奇偶性与组合数的关系+lucas定理 好题
题目大意 求子集斯特林数\(\left\{\begin{matrix}n\\m\end{matrix}\right\}\%2\) 方法1 数形结合 推荐一篇超棒的博客by Sdchr 就是根据斯特林的 ...
- 紫书 例题8-9 UVa 1451 (数形结合)
这道题用了数形结合, 真的牛逼, 完全想到不到还可以这么做 因为题目求的是平均值, 是总数除以个数, 这个时候就可以联系 到斜率, 也就是说转化为给你一堆点, 让你求两点之间的最大斜率 要做两个处理 ...
- Linux Shell參数扩展(Parameter Expansion)
本文主要參考:http://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html#tag_18_06_02 其它资料:ht ...
- UVa 12627 Erratic Expansion - 分治
因为不好复制题目,就出给出链接吧: Vjudge传送门[here] UVa传送门[here] 请仔细看原题上的那幅图,你会发现,在时间t(t > 0),当前的气球构成的一幅图,它是由三个时间为( ...
- HDU 4696 Answers (脑补+数形结合)
题意 给一个图,每个点的出度为1,每个点的权值为1或者2.给Q个询问,问是否能找到一条路径的权值和M. 思路 由于每个点的出度为1,所以必然存在环.又因为c[i]只能取1或者2,可以组成任意值,所以只 ...
随机推荐
- auto-keras 测试保存导入模型
# coding:utf-8 import time import matplotlib.pyplot as plt from autokeras import ImageClassifier# 保存 ...
- JAVA Frame 响应窗口关闭事件
/* * To change this license header, choose License Headers in Project Properties. * To change this t ...
- Tornado 安装及简单程序示例
1.安装步骤:tar xvzf tornado-3.2.tar.gz cd tornado-3.2 python setup.py build sudo python setup.py install ...
- Mac OSX下Appium驱动iPhone真机
1.安装Xcode.Command Line Tools和Appium. 2.安装brew:/usr/bin/ruby -e "$(curl -fsSL https://raw.github ...
- nodejs面试题
1.为什么用Nodejs,它有哪些缺点? 事件驱动,通过闭包很容易实现客户端的生命活期. 不用担心多线程,锁,并行计算的问题 V8引擎速度非常快 对于游戏来说,写一遍游戏逻辑代码,前端后端通用 当然N ...
- leetcode 之Swap Nodes in Pairs(21)
不允许通过值来交换,在更新指针时需要小心. ListNode *swapNodes(ListNode* head) { ListNode dummy(-); dummy.next = head; fo ...
- ltsdangerous加密解密
前言 在做QQ第三方登录时,用户跳转到QQ登录界面登录成功后,会在URL返回一个code参数.前端把code发送给后端.后端收到后,会查询出openid.然后判断openid是否存在,如果存在就可以绑 ...
- mysql 服务器配置
Windows: 1.在bin目录下执行mysqld.exe --install-manual安装服务(删除命令是mysqld.exe --remove) 2.执行net start mysql启动服 ...
- 小知识-为什么Linux不需要磁盘碎片整理
转载至:http://beikeit.com/post-495.html 简单译文: 这段linux官方资料主要介绍了外部碎片(external fragmentation).内部碎片(inter ...
- 今天开始学模式识别与机器学习(PRML),章节5.1,Neural Networks神经网络-前向网络。
今天开始学模式识别与机器学习Pattern Recognition and Machine Learning (PRML),章节5.1,Neural Networks神经网络-前向网络. 话说上一次写 ...