tensorflow 的 tutorial 的卷积神经网络的例子 convolutional.py
具体的网址在这里:
https://github.com/tensorflow/tensorflow/tree/r0.12/tensorflow/models
一个卷积神经网络用于股票分析的例子: https://github.com/keon/deepstock, https://github.com/keon/deepstock
import argparse
import gzip
import os
import sys
import time import numpy
import tensorflow as tf SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
WORK_DIRECTORY = '/home/hzh/tf'
IMAGE_SIZE = 28
NUM_CHANNELS = 1
PIXEL_DEPTH = 255
NUM_LABELS = 10
VALIDATION_SIZE = 5000 # Size of the validation set.
SEED = 66478 # Set to None for random seed.
BATCH_SIZE = 64
NUM_EPOCHS = 10
EVAL_BATCH_SIZE = 64
EVAL_FREQUENCY = 100 # Number of steps between evaluations. FLAGS = None def data_type():
"""Return the type of the activations, weights, and placeholder variables."""
if FLAGS.use_fp16:
return tf.float16
else:
return tf.float32 def maybe_download(filename):
"""Download the data from Yann's website, unless it's already here."""
if not tf.gfile.Exists(WORK_DIRECTORY):
tf.gfile.MakeDirs(WORK_DIRECTORY)
filepath = os.path.join(WORK_DIRECTORY, filename)
return filepath def extract_data(filename, num_images):
"""Extract the images into a 4D tensor [image index, y, x, channels].
Values are rescaled from [0, 255] down to [-0.5, 0.5].
"""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
bytestream.read(16)
buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images * NUM_CHANNELS)
data = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.float32)
data = (data - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH
data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)
return data def extract_labels(filename, num_images):
"""Extract the labels into a vector of int64 label IDs."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
bytestream.read(8)
buf = bytestream.read(1 * num_images)
labels = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.int64)
return labels def fake_data(num_images):
"""Generate a fake dataset that matches the dimensions of MNIST."""
data = numpy.ndarray(
shape=(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS),
dtype=numpy.float32)
labels = numpy.zeros(shape=(num_images,), dtype=numpy.int64)
for image in range(num_images):
label = image % 2
data[image, :, :, 0] = label - 0.5
labels[image] = label
return data, labels def error_rate(predictions, labels):
"""Return the error rate based on dense predictions and sparse labels."""
return 100.0 - (
100.0 *
numpy.sum(numpy.argmax(predictions, 1) == labels) / predictions.shape[0]) def main(_):
if FLAGS.self_test:
print('Running self-test.')
train_data, train_labels = fake_data(256)
validation_data, validation_labels = fake_data(EVAL_BATCH_SIZE)
test_data, test_labels = fake_data(EVAL_BATCH_SIZE)
num_epochs = 1
else:
# Get the data.
train_data_filename = maybe_download('train-images-idx3-ubyte.gz')
train_labels_filename = maybe_download('train-labels-idx1-ubyte.gz')
test_data_filename = maybe_download('t10k-images-idx3-ubyte.gz')
test_labels_filename = maybe_download('t10k-labels-idx1-ubyte.gz') # Extract it into numpy arrays.
train_data = extract_data(train_data_filename, 60000)
train_labels = extract_labels(train_labels_filename, 60000)
test_data = extract_data(test_data_filename, 10000)
test_labels = extract_labels(test_labels_filename, 10000) # Generate a validation set.
validation_data = train_data[:VALIDATION_SIZE, ...]
validation_labels = train_labels[:VALIDATION_SIZE]
train_data = train_data[VALIDATION_SIZE:, ...]
train_labels = train_labels[VALIDATION_SIZE:]
num_epochs = NUM_EPOCHS
train_size = train_labels.shape[0] # This is where training samples and labels are fed to the graph.
# These placeholder nodes will be fed a batch of training data at each
# training step using the {feed_dict} argument to the Run() call below.
train_data_node = tf.placeholder(
data_type(),
shape=(BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
train_labels_node = tf.placeholder(tf.int64, shape=(BATCH_SIZE,))
eval_data = tf.placeholder(
data_type(),
shape=(EVAL_BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS)) # The variables below hold all the trainable weights. They are passed an
# initial value which will be assigned when we call:
# {tf.global_variables_initializer().run()}
conv1_weights = tf.Variable(
tf.truncated_normal([5, 5, NUM_CHANNELS, 32], # 5x5 filter, depth 32.
stddev=0.1,
seed=SEED, dtype=data_type()))
conv1_biases = tf.Variable(tf.zeros([32], dtype=data_type()))
conv2_weights = tf.Variable(tf.truncated_normal(
[5, 5, 32, 64], stddev=0.1,
seed=SEED, dtype=data_type()))
conv2_biases = tf.Variable(tf.constant(0.1, shape=[64], dtype=data_type()))
fc1_weights = tf.Variable( # fully connected, depth 512.
tf.truncated_normal([IMAGE_SIZE // 4 * IMAGE_SIZE // 4 * 64, 512],
stddev=0.1,
seed=SEED,
dtype=data_type()))
fc1_biases = tf.Variable(tf.constant(0.1, shape=[512], dtype=data_type()))
fc2_weights = tf.Variable(tf.truncated_normal([512, NUM_LABELS],
stddev=0.1,
seed=SEED,
dtype=data_type()))
fc2_biases = tf.Variable(tf.constant(0.1, shape=[NUM_LABELS], dtype=data_type())) # We will replicate the model structure for the training subgraph, as well
# as the evaluation subgraphs, while sharing the trainable parameters.
def model(data, train=False):
"""The Model definition."""
# 2D convolution, with 'SAME' padding (i.e. the output feature map has
# the same size as the input). Note that {strides} is a 4D array whose
# shape matches the data layout: [image index, y, x, depth].
conv = tf.nn.conv2d(data,
conv1_weights,
strides=[1, 1, 1, 1],
padding='SAME')
# Bias and rectified linear non-linearity.
relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases))
# Max pooling. The kernel size spec {ksize} also follows the layout of
# the data. Here we have a pooling window of 2, and a stride of 2.
pool = tf.nn.max_pool(relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
conv = tf.nn.conv2d(pool,
conv2_weights,
strides=[1, 1, 1, 1],
padding='SAME')
relu = tf.nn.relu(tf.nn.bias_add(conv, conv2_biases))
pool = tf.nn.max_pool(relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
# Reshape the feature map cuboid into a 2D matrix to feed it to the
# fully connected layers.
pool_shape = pool.get_shape().as_list()
reshape = tf.reshape(
pool,
[pool_shape[0], pool_shape[1] * pool_shape[2] * pool_shape[3]])
# Fully connected layer. Note that the '+' operation automatically
# broadcasts the biases.
hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases)
# Add a 50% dropout during training only. Dropout also scales
# activations such that no rescaling is needed at evaluation time.
if train:
hidden = tf.nn.dropout(hidden, 0.5, seed=SEED)
return tf.matmul(hidden, fc2_weights) + fc2_biases # Training computation: logits + cross-entropy loss.
logits = model(train_data_node, True)
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=train_labels_node)) # L2 regularization for the fully connected parameters.
regularizers = (tf.nn.l2_loss(fc1_weights) + tf.nn.l2_loss(fc1_biases) +
tf.nn.l2_loss(fc2_weights) + tf.nn.l2_loss(fc2_biases))
# Add the regularization term to the loss.
loss += 5e-4 * regularizers # Optimizer: set up a variable that's incremented once per batch and
# controls the learning rate decay.
batch = tf.Variable(0, dtype=data_type())
# Decay once per epoch, using an exponential schedule starting at 0.01.
learning_rate = tf.train.exponential_decay(
0.01, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
train_size, # Decay step.
0.95, # Decay rate.
staircase=True)
# Use simple momentum for the optimization.
optimizer = tf.train.MomentumOptimizer(learning_rate,
0.9).minimize(loss,
global_step=batch) # Predictions for the current training minibatch.
train_prediction = tf.nn.softmax(logits) # Predictions for the test and validation, which we'll compute less often.
eval_prediction = tf.nn.softmax(model(eval_data)) # Small utility function to evaluate a dataset by feeding batches of data to
# {eval_data} and pulling the results from {eval_predictions}.
# Saves memory and enables this to run on smaller GPUs.
def eval_in_batches(data, sess):
"""Get all predictions for a dataset by running it in small batches."""
size = data.shape[0]
if size < EVAL_BATCH_SIZE:
raise ValueError("batch size for evals larger than dataset: %d" % size)
predictions = numpy.ndarray(shape=(size, NUM_LABELS), dtype=numpy.float32)
for begin in range(0, size, EVAL_BATCH_SIZE):
end = begin + EVAL_BATCH_SIZE
if end <= size:
predictions[begin:end, :] = sess.run(
eval_prediction,
feed_dict={eval_data: data[begin:end, ...]})
else:
batch_predictions = sess.run(
eval_prediction,
feed_dict={eval_data: data[-EVAL_BATCH_SIZE:, ...]})
predictions[begin:, :] = batch_predictions[begin - size:, :]
return predictions # Create a local session to run the training.
start_time = time.time()
with tf.Session() as sess:
# Run all the initializers to prepare the trainable parameters.
tf.global_variables_initializer().run()
print('Initialized!')
# Loop through training steps.
for step in range(int(num_epochs * train_size) // BATCH_SIZE):
# Compute the offset of the current minibatch in the data.
# Note that we could use better randomization across epochs.
offset = (step * BATCH_SIZE) % (train_size - BATCH_SIZE)
batch_data = train_data[offset:(offset + BATCH_SIZE), ...]
batch_labels = train_labels[offset:(offset + BATCH_SIZE)]
# This dictionary maps the batch data (as a numpy array) to the
# node in the graph it should be fed to.
feed_dict = {train_data_node: batch_data, train_labels_node: batch_labels}
# Run the optimizer to update weights.
sess.run(optimizer, feed_dict=feed_dict)
# print some extra information once reach the evaluation frequency
if step % EVAL_FREQUENCY == 0:
# fetch some extra nodes' data
l, lr, predictions = sess.run([loss, learning_rate, train_prediction], feed_dict=feed_dict)
elapsed_time = time.time() - start_time
start_time = time.time()
print('Step %d (epoch %.2f), %.1f ms' %
(step, float(step) * BATCH_SIZE / train_size,
1000 * elapsed_time / EVAL_FREQUENCY))
print('Minibatch loss: %.3f, learning rate: %.6f' % (l, lr))
print('Minibatch error: %.1f%%' % error_rate(predictions, batch_labels))
print('Validation error: %.1f%%' % error_rate(eval_in_batches(validation_data, sess), validation_labels))
sys.stdout.flush()
# Finally print the result!
test_error = error_rate(eval_in_batches(test_data, sess), test_labels)
print('Test error: %.1f%%' % test_error)
if FLAGS.self_test:
print('test_error', test_error)
assert test_error == 0.0, 'expected 0.0 test_error, got %.2f' % (test_error,) if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--use_fp16',
default=False,
help='Use half floats instead of full floats if True.',
action='store_true')
parser.add_argument(
'--self_test',
default=False,
action='store_true',
help='True if running a self test.') FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
网址里面还有很多其它的示例,这些示例代码是最全的,比google网站上的还全,也比 github 上最新的 tensorflow 的库的例子要全要好 。
tensorflow 的 tutorial 的卷积神经网络的例子 convolutional.py的更多相关文章
- 使用TensorFlow v2.0构建卷积神经网络
使用TensorFlow v2.0构建卷积神经网络. 这个例子使用低级方法来更好地理解构建卷积神经网络和训练过程背后的所有机制. CNN 概述 MNIST 数据集概述 此示例使用手写数字的MNIST数 ...
- 【深度学习与TensorFlow 2.0】卷积神经网络(CNN)
注:在很长一段时间,MNIST数据集都是机器学习界很多分类算法的benchmark.初学深度学习,在这个数据集上训练一个有效的卷积神经网络就相当于学习编程的时候打印出一行“Hello World!”. ...
- TensorFlow 深度学习笔记 卷积神经网络
Convolutional Networks 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Is ...
- TensorFlow 实战之实现卷积神经网络
本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关性概念 1.卷积神经网络(ConvolutionNeu ...
- 机器学习与Tensorflow(4)——卷积神经网络与tensorflow实现
1.标准卷积神经网络 标准的卷积神经网络由输入层.卷积层(convolutional layer).下采样层(downsampling layer).全连接层(fully—connected laye ...
- tensorflow学习笔记七----------卷积神经网络
卷积神经网络比神经网络稍微复杂一些,因为其多了一个卷积层(convolutional layer)和池化层(pooling layer). 使用mnist数据集,n个数据,每个数据的像素为28*28* ...
- tensorflow学习之路-----卷积神经网络个人总结
卷积神经网络大总结(个人理解) 神经网络 1.概念:从功能他们模仿真实数据 2.结构:输入层.隐藏层.输出层.其中隐藏层要有的参数:权重.偏置.激励函数.过拟合 3.功能:能通过模仿,从而学到事件 其 ...
- tensorflow文本分类实战——卷积神经网络CNN
首先说明使用的工具和环境:python3.6.8 tensorflow1.14.0 centos7.0(最好用Ubuntu) 关于环境的搭建只做简单说明,我这边是使用pip搭建了python的 ...
- Tensorflow学习教程------利用卷积神经网络对mnist数据集进行分类_利用训练好的模型进行分类
#coding:utf-8 import tensorflow as tf from PIL import Image,ImageFilter from tensorflow.examples.tut ...
随机推荐
- [转]c++ virtual public的含义和作用
我在写基于MICO的CORBA程序的时候遇到的,上网查了一下 转自:http://bbs.seu.edu.cn/pc/pccon.php?id=872&nid=16822 Question:父 ...
- string 大小写转换
STL的algorithm库确实给我们提供了这样的便利,使用模板函数transform可以轻松解决这个问题,开发人员只需要提供一个函数对象,例如将char转成大写的toupper函数或者小写的函数 ...
- git patch生成方法
先把改动commit掉,然后生产改动patch给提交代码的同事,详细操作过程例如以下: 改动代码的同事: git format-patch al821_xxx origin/al821_xxx 会生成 ...
- linux设置时间的方法
0. date -R 中国上海的时区是+8000 1.tzselect 设置时区,依次选择5,9,1,1(如果时区不一样,执行下面的命令得到之后时间是不一样的) 2.sudo ntpdate asi ...
- hbase java Api练习
package cn.itcast_01_hbase; import java.util.ArrayList; import java.util.List; import org.apache.had ...
- poj 3246 Balanced Lineup(线段树)
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 38942 Accepted: 18247 ...
- C语言 函数指针三(反向调用)
动态库代码 //简单的动态库开发----报文发送 #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdlib. ...
- java web 登录框
我们会骂 12306 的网站界面挫,效果差,速度慢,回头看看自己写的代码,是不是也一样的狗血!在前端,很多看似简单的东西,内藏无数玄机.本文将以一个小小的登录框为入口,谈一谈如何完善自己的程序. 在很 ...
- 主流数据文件类型(.dat/.txt/.json/.csv)导入到python
手写很累,复制的同学请点赞犒劳下在下哦 ^_^ 一.对于.CSV类型的数据 它们的数据导入都很简单 且看下面一顿操作: 我平时一般是读取整个文件,直接这样就可以了: import pandas as ...
- 如果 date_field = TRUNC(date_field) 就说明时分秒为0(也就是不包含),否则就包含时分秒
如果 date_field = TRUNC(date_field) 就说明时分秒为0(也就是不包含),否则就包含时分秒