【BZOJ3144】[Hnoi2013]切糕 最小割
【BZOJ3144】[Hnoi2013]切糕
Description
.jpg)
Input
第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。
Output
仅包含一个整数,表示在合法基础上最小的总不和谐值。
Sample Input
1
6 1
6 1
2 6
2 6
Sample Output
HINT
最佳切面的f为f(1,1)=f(2,1)=2,f(1,2)=f(2,2)=1
题解:APIO上学到了这种建图方法,赶紧%一发
先不考虑D的限制,那么原题就是无脑最小割,图大概长这样(只考虑两个纵轴)

但如果加上这条限制,我们该怎么做?这里先给出结论,假设D=1,从7->2连一条∞的边,从3->6连一条∞的边(其余同理),原图变成了这样

(画图软件有点尴尬~)
发现如果这样连边,我们就可以防止(1,2)与(7,8)同时被割掉,因为就算割掉这两条边,S仍然可以通过5-6-3-4与T联通,所以只能割别的边
一开始我比较懒,省略了S->1,4->T这两条长度为∞的边,结果狂WA不止,后来发现R可以等于1。。。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
#define P(A,B,C) ((C-1)*n*m+(B-1)*n+A)
using namespace std;
const int maxm=1000000;
const int maxn=100010;
queue<int> q;
int n,m,h,S,T,D,cnt,ans;
int to[maxm],next[maxm],val[maxm],head[maxn],d[maxn];
int dx[]={1,0,-1,0},dy[]={0,1,0,-1};
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int bfs()
{
memset(d,0,sizeof(d));
while(!q.empty()) q.pop();
int i,u;
d[S]=1,q.push(S);
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i!=-1;i=next[i])
{
if(!d[to[i]]&&val[i])
{
d[to[i]]=d[u]+1;
if(to[i]==T) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dfs(int x,int mf)
{
if(x==T) return mf;
int i,k,temp=mf;
for(i=head[x];i!=-1;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i])
{
k=dfs(to[i],min(temp,val[i]));
if(!k) d[to[i]]=0;
val[i]-=k,val[i^1]+=k,temp-=k;
if(!temp) break;
}
}
return mf-temp;
}
void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
to[cnt]=a,val[cnt]=0,next[cnt]=head[b],head[b]=cnt++;
}
int main()
{
n=rd(),m=rd(),h=rd(),D=rd();
memset(head,-1,sizeof(head));
int i,j,k,l;
S=0,T=n*m*h+1;
for(k=1;k<=h;k++)
{
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
if(k==1) add(S,P(i,j,k),rd());
else add(P(i,j,k-1),P(i,j,k),rd());
if(k==h) add(P(i,j,k),T,1<<30);
if(k>D) for(l=0;l<4;l++) if(i+dx[l]&&i+dx[l]<=n&&j+dy[l]&&j+dy[l]<=m)
add(P(i,j,k),P(i+dx[l],j+dy[l],k-D),1<<30);
}
}
}
while(bfs()) ans+=dfs(S,1<<30);
printf("%d",ans);
return 0;
}
【BZOJ3144】[Hnoi2013]切糕 最小割的更多相关文章
- bzoj3144 [HNOI2013]切糕(最小割)
bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对 ...
- BZOJ3144[Hnoi2013]切糕——最小割
题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...
- 【BZOJ-3144】切糕 最小割-最大流
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1261 Solved: 700[Submit][Status] ...
- bzoj 3144: [Hnoi2013]切糕 最小割
3144: [Hnoi2013]切糕 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 681 Solved: 375[Submit][Status] ...
- Luogu P3227 [HNOI2013]切糕 最小割
首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅. 经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_= 技巧:加边表示限制 在没有距离\(<=d\)的限制时候,我们对每 ...
- bzoj 3144 [Hnoi2013]切糕——最小割
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...
- BZOJ3144 Hnoi2013 切糕 【网络流】*
BZOJ3144 Hnoi2013 切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的 ...
- BZOJ3144 [Hnoi2013]切糕 【最小割】
题目 输入格式 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...
- BZOJ3144/LG3227 「HNOI2013」切糕 最小割离散变量模型
问题描述 BZOJ3144 LG3227 还想粘下样例 输入: 2 2 2 1 6 1 6 1 2 6 2 6 输出: 6 题解 关于离散变量模型,我不想再抄一遍,所以: 对于样例,可以建立出这样的图 ...
随机推荐
- win10改win7如何设置bios教程
情况一: 我们按del键(百度自己电脑.主板如何进入bios)进入主板bios后,我们通过键盘将选项移动到 Authentication 菜单(bios界面各不相同,可能不在此项,找到对应 secur ...
- C语言之指针基础概念
今天就写一下关于C语言指针的一些感想吧. 很多同学都搞不懂指针,我一开始也云里雾里没看懂指针,而且老师又把指针说得很难的样子.其实主要是把指针”*“的作用给弄混了,不用畏惧,细心点看就可以了. 首先简 ...
- centos7 crontab 定时执行python任务不执行的原因及解决办法
1.问题描述 在用crontab设置定时任务时,发现py脚本在crontab中报错,显示import某些包找不到,但是手动直接运行py脚本,完全正常. 01 05 * * * ./get_topi ...
- java通过CLASSPATH读取包内文件
读取包内文件,使用的路径一定是相对的classpath路径,比如a,位于包内,此时可以创建读取a的字节流:InputStream in = ReadFile.class.getResourceAsSt ...
- JS正则表达式(转载)
在JavaScript中,RegExp对象表示正则表达式,用来对字符串进行匹配. 一.两种定义方法: 1.直接量法: /pattern/attribute 2.对象法: new RegExp(patt ...
- C#线程同步技术(一) lock 语句
开篇语: 上班以后,烦恼少了,至少是没有什么好烦的了,只要负责好自己的工作就可以了,因此也有更多的时间去探索自己喜欢的程序.买回来的书已经看了一半,DEMO也敲了不少,昨晚终于在这里开BLOG,记录一 ...
- php 面象对象类自动加载
//自动加载第一步 function myload($class) { require('./'.$class.'.class.php'); } //注册一个函数为自动触发函数 spl_autoloa ...
- mysql主从复制之mysql-proxy实现读写分离
原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://lansgg.blog.51cto.com/5675165/1242674 本文系 ...
- js setInterval()函数 [倒计时用]
定义和用法: setInterval() 方法用于在指定的毫秒数后调用函数或计算表达式.它与setTimeout()方法不同的是前者可以无限的循环,不会受调用函数的限制,要想退出此循环可 ...
- thread_线程间协作:wait、notify、notifyAll和Condition
经典模式:生产者-消费者模型:当队列满时,生产者需要等待队列有空间才能继续往里面放入商品,而在等待的期间内,生产者必须释放对临界资源(即队列)的占用权.因为生产者如果不释放对临界资源的占用权,那么消费 ...