【BZOJ3144】[Hnoi2013]切糕

Description

Input

第一行是三个正整数P,Q,R,表示切糕的长P、 宽Q、高R。第二行有一个非负整数D,表示光滑性要求。接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤P, 1≤y≤Q, 1≤z≤R)。 
100%的数据满足P,Q,R≤40,0≤D≤R,且给出的所有的不和谐值不超过1000。

Output

仅包含一个整数,表示在合法基础上最小的总不和谐值。

Sample Input

2 2 2
1
6 1
6 1
2 6
2 6

Sample Output

6

HINT

最佳切面的f为f(1,1)=f(2,1)=2,f(1,2)=f(2,2)=1

题解:APIO上学到了这种建图方法,赶紧%一发

先不考虑D的限制,那么原题就是无脑最小割,图大概长这样(只考虑两个纵轴)

但如果加上这条限制,我们该怎么做?这里先给出结论,假设D=1,从7->2连一条∞的边,从3->6连一条∞的边(其余同理),原图变成了这样

(画图软件有点尴尬~)

发现如果这样连边,我们就可以防止(1,2)与(7,8)同时被割掉,因为就算割掉这两条边,S仍然可以通过5-6-3-4与T联通,所以只能割别的边

一开始我比较懒,省略了S->1,4->T这两条长度为∞的边,结果狂WA不止,后来发现R可以等于1。。。

#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
#define P(A,B,C) ((C-1)*n*m+(B-1)*n+A)
using namespace std;
const int maxm=1000000;
const int maxn=100010;
queue<int> q;
int n,m,h,S,T,D,cnt,ans;
int to[maxm],next[maxm],val[maxm],head[maxn],d[maxn];
int dx[]={1,0,-1,0},dy[]={0,1,0,-1};
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int bfs()
{
memset(d,0,sizeof(d));
while(!q.empty()) q.pop();
int i,u;
d[S]=1,q.push(S);
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i!=-1;i=next[i])
{
if(!d[to[i]]&&val[i])
{
d[to[i]]=d[u]+1;
if(to[i]==T) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dfs(int x,int mf)
{
if(x==T) return mf;
int i,k,temp=mf;
for(i=head[x];i!=-1;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i])
{
k=dfs(to[i],min(temp,val[i]));
if(!k) d[to[i]]=0;
val[i]-=k,val[i^1]+=k,temp-=k;
if(!temp) break;
}
}
return mf-temp;
}
void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
to[cnt]=a,val[cnt]=0,next[cnt]=head[b],head[b]=cnt++;
}
int main()
{
n=rd(),m=rd(),h=rd(),D=rd();
memset(head,-1,sizeof(head));
int i,j,k,l;
S=0,T=n*m*h+1;
for(k=1;k<=h;k++)
{
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
if(k==1) add(S,P(i,j,k),rd());
else add(P(i,j,k-1),P(i,j,k),rd());
if(k==h) add(P(i,j,k),T,1<<30);
if(k>D) for(l=0;l<4;l++) if(i+dx[l]&&i+dx[l]<=n&&j+dy[l]&&j+dy[l]<=m)
add(P(i,j,k),P(i+dx[l],j+dy[l],k-D),1<<30);
}
}
}
while(bfs()) ans+=dfs(S,1<<30);
printf("%d",ans);
return 0;
}

【BZOJ3144】[Hnoi2013]切糕 最小割的更多相关文章

  1. bzoj3144 [HNOI2013]切糕(最小割)

    bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对 ...

  2. BZOJ3144[Hnoi2013]切糕——最小割

    题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...

  3. 【BZOJ-3144】切糕 最小割-最大流

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1261  Solved: 700[Submit][Status] ...

  4. bzoj 3144: [Hnoi2013]切糕 最小割

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 681  Solved: 375[Submit][Status] ...

  5. Luogu P3227 [HNOI2013]切糕 最小割

    首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅. 经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_= 技巧:加边表示限制 在没有距离\(<=d\)的限制时候,我们对每 ...

  6. bzoj 3144 [Hnoi2013]切糕——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...

  7. BZOJ3144 Hnoi2013 切糕 【网络流】*

    BZOJ3144 Hnoi2013 切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的 ...

  8. BZOJ3144 [Hnoi2013]切糕 【最小割】

    题目 输入格式 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...

  9. BZOJ3144/LG3227 「HNOI2013」切糕 最小割离散变量模型

    问题描述 BZOJ3144 LG3227 还想粘下样例 输入: 2 2 2 1 6 1 6 1 2 6 2 6 输出: 6 题解 关于离散变量模型,我不想再抄一遍,所以: 对于样例,可以建立出这样的图 ...

随机推荐

  1. Java中正数与负数操作>>、>>>的区别

    以下为个人理解,有不对的地方请提出 Java中,>>.>>>都是在数字的二进制的补码中进行的 正数的补码为本身 如33的二进制表示为 00000000 00000000 ...

  2. FusionCharts:tooltip分行显示

    FusionCharts:tooltip分行显示 tooltip分行显示:如果tooltip过长,可分行显示,在tooltip中增加{br} <chart> <set label=' ...

  3. windows和linux中换行符的转换

    数据开发平台使用上传脚本报错:保存失败,文件编码格式不正确,请修改文件换行符为Unix终束符! 修改方式:DOS系统下,使用文本编译器另存为,然后选择换行符为unix终束符. 解释: windows ...

  4. [k8s]监控

    监控架构 参考 https://github.com/DataDog/the-monitor/blob/master/kubernetes/how-to-collect-and-graph-kuber ...

  5. C#生日提醒小工具

    一个很粗糙的版本,就当一个小例子看一下吧, 运行效果如下: 开发环境VS2017,用的WinForm,涉及一点xml,直接上图. 一.项目涉及的文件如下图: 二.每个文件内容: 1.MainForm  ...

  6. Docker使用Dockerfile创建支持ssh服务自启动的容器镜像

    原文链接:Docker使用Dockerfile创建支持ssh服务自启动的容器镜像 1. 首先创建一个Dockerfile文件.文件内容例如以下 # 选择一个已有的os镜像作为基础 FROM cento ...

  7. 544. Top k Largest Numbers【medium】

    Given an integer array, find the top k largest numbers in it.   Example Given [3,10,1000,-99,4,100] ...

  8. poj 2846 Repository

    题目大意:给你n个字符串,然后给你m个子串,看这个子串在上面的多少个串中,出现过: 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2846 本题可以在字 ...

  9. 13个实用的Apache Rewrite重写规则

    1.去掉域名中的www标记 复制代码 代码如下: RewriteCond %{HTTP_HOST} !^jb51\.net$ [NC]RewriteRule .? http://jb51.net%{R ...

  10. Linux中如何设置服务自启动?

    转自:Linux中如何设置服务自启动? 有时候我们需要Linux系统在开机的时候自动加载某些脚本或系统服务,主要用三种方式进行这一操作: ln -s             在/etc/rc.d/rc ...