【算法】博弈论

【题解】这道题不是典型的SG函数题了。

不把它当成游戏看待,那么这道题是在说n个石子堆,每次可以加入若干个或进行Nim游戏。

我们当前先手,则考虑构造必败态来获胜。

当前已加入的NIm游戏SG=0,则必须考虑加入石子堆,若加入m堆构造出SG=0,对方有两种选择:

加入新的石子堆,则必须是SG=0。

进行Nim游戏,但是目前SG=0,先手必败。

所以只要把n堆中异或和=0的最长子序列在第一次操作时移入即可先手必胜。

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int a[],n,tot;
bool dfs(int x,int ans)
{
if(x==n+)
{
if((!ans)&&tot)return ;
return ;//!!!
}
else
{
tot++;
bool ok=dfs(x+,ans^a[x]);
tot--;
if(!ok)ok=dfs(x+,ans);
return ok;
}
}
int main()
{
int T=;
while(T--)
{
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
tot=;
if(dfs(,))printf("NO\n");else printf("YES\n");
}
return ;
}

【BZOJ】1299: [LLH邀请赛]巧克力棒的更多相关文章

  1. bzoj:1299: [LLH邀请赛]巧克力棒

    原题:http://www.lydsy.com/JudgeOnline/problem.php?id=1299 众多dalao的题解已经很详细了:http://blog.csdn.net/wzq_qw ...

  2. BZOJ 1299: [LLH邀请赛]巧克力棒 [组合游戏]

    每次一人可以从盒子里取出若干条巧克力棒,或是将一根取出的巧克力棒吃掉正整数长度. Nim游戏多了一个决策:拿出一些石堆 显然只要给对方构造异或和为0的子集就行了 暴枚子集... #include &l ...

  3. BZOJ.1299.[LLH邀请赛]巧克力棒(博弈论 Nim)

    题目链接 \(Description\) 两人轮流走,每次可以从盒子(容量给定)中取出任意堆石子加入Nim游戏,或是拿走任意一堆中正整数个石子.无法操作的人输.10组数据. \(Solution\) ...

  4. BZOJ 1299: [LLH邀请赛]巧克力棒 【SG函数/博弈分析/高斯消元】

    因为太懒,放个博客 我只写了O(2n)O(2^n)O(2n)的 CODE #include <cstdio> int n, x[15]; int main () { for(int T = ...

  5. BZOJ1299 [LLH邀请赛]巧克力棒

    怎么又是博弈论...我去 Orz hzwer,这道题其实是可以转化成Nim游戏的! "第一步: 先从n根巧克力棒中取出m(m>0)根,使得这m根巧克力棒的xor和为0,同时使得剩下的n ...

  6. 【bzoj1299】[LLH邀请赛]巧克力棒(博弈论思维题)

    题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=1299 首先我们把每根巧克力棒看成一堆石子,把巧克力棒的长度看作石子的个数,那么原问题就 ...

  7. BZOJ1299: [LLH邀请赛]巧克力棒(Nim游戏)

    Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 552  Solved: 331[Submit][Status][Discuss] Descriptio ...

  8. BZOJ1299[LLH邀请赛]巧克力棒——Nim游戏+搜索

    题目描述 TBL和X用巧克力棒玩游戏.每次一人可以从盒子里取出若干条巧克力棒,或是将一根取出的巧克力棒吃掉正整数长度.TBL先手两人轮流,无法操作的人输. 他们以最佳策略一共进行了10轮(每次一盒). ...

  9. 【bzoj1299】[LLH邀请赛]巧克力棒 博弈+模拟

    Description TBL和X用巧克力棒玩游戏.每次一人可以从盒子里取出若干条巧克力棒,或是将一根取出的巧克力棒吃掉正整数长度.TBL先手两人轮流,无法操作的人输. 他们以最佳策略一共进行了10轮 ...

随机推荐

  1. Git使用笔记一(关于如何设置密钥及提交)(Windows)

    如何设置密钥 ssh-keygen -t rsa或ssh-keygen -t rsa -C ‘邮箱’ (注意 1.-t前有一个空格:2.keygen是key generate的缩写:3.而后连续输入三 ...

  2. C# WebBrowser控件详解

     作者:827969653     0.常用方法 Navigate(string urlString):浏览urlString表示的网址 Navigate(System.Uri url):浏览url表 ...

  3. 关于Python的 a, b = b, a+b

    Python中有一种写法:多个值同时赋给多个变量,如:a, b = b, a+b 1. A写法 a = 0, b = 1 a, b = b, a+b print a, b #结果为:1 1 这种写法, ...

  4. [洛谷P4735]最大异或和

    题目大意:有一串初始长度为$n$的序列$a$,有两种操作: $A\;x:$在序列末尾加一个数$x$ $Q\;l\;r\;x:$找一个位置$p$,满足$l\leqslant p\leqslant r$, ...

  5. [TJOI2013]最长上升子序列 平衡树

    其实是一道性质题. 首先观察到插入的数是递增的, 那么根据上升子序列的性质, 我们的非法情况就是统计到了在一个数前面的后插入的数, 但是由于插入的数是递增的,显然插入这个数后,这个数就是最大的,所以除 ...

  6. HDOJ.1263 水果(map)

    水果 点我跳转到题面 点我一起学习STL-MAP 题意分析 给出多组测试数据,每组数据有多条信息.分别是水果种类,地点,和水果数目.每组信息要按照样例输出,并且输出要按照地点->水果种类的字典序 ...

  7. bzoj1045: [HAOI2008] 糖果传递(思维题)

    首先每个人一定分到的糖果都是所有糖果的平均数ave. 设第i个人给i-1个人Xi个糖果,则有Ai-Xi+X(i+1)=ave. 则A1-X1+X2=ave,A2-X2+X3=ave,A3-X3+X4= ...

  8. AES encryption of files (and strings) in java with randomization of IV (initialization vector)

    http://siberean.livejournal.com/14788.html Java encryption-decryption examples, I've seen so far in ...

  9. 使用Phoenix将SQL代码移植至HBase

    1.前言 HBase是云计算环境下最重要的NOSQL数据库,提供了基于Hadoop的数据存储.索引.查询,其最大的优点就是可以通过硬件的扩展从而几乎无限的扩展其存储和检索能力.但是HBase与传统的基 ...

  10. springMVC文件上传的三种方法

    这时:commonsmultipartresolver 的源码,可以研究一下 http://www.verysource.com/code/2337329_1/commonsmultipartreso ...